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Variational Inequality

Definition
We consider the unconstrained variational inequality (VI) problem:

Find z∗ ∈ Rd such that F (z∗) = 0,

where F : Rd → Rd is some operator.
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Variational Inequality

• Minimization problem:

min
z∈Rd

f (z).

With F (z)
def
= ∇f (z). And try to find ∇f (z∗) = 0 .

• Saddle point problem:

min
x∈Rdx

min
y∈Rdy

g(x , y).

With F (z)
def
= F (x , y) = [∇xg(x , y),−∇yg(x , y)]. And try to find

∇xg(x
∗, y∗) = 0.

• Fixed point problem:

Найти z∗ ∈ Rd такую, что T (z∗) = z∗,

where T : Rd → Rd is an operator. We need to take F (z) = z − T (z).
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Stochastic Variational Inequality

Definition
We consider the unconstrained variational inequality (VI) problem:

F (z) =
1
n

n∑
i=1

Fi (z).

where Fi : Rd → Rd are some operators.

Aleksandr Beznosikov SARAH Algorithm for Stochastic VIs 31st January 2023 4 / 11



Stochastic Variational Inequality: examples

• Emperical risk minimization:

min
z∈Rd

1
n

n∑
i=1

l(f (xi , z), yi ),

where {xi , yi}ni=1 – данные, f – модель в параметрами z , l – функция
потерь.

• Adversarial training:

min
z∈Rd

max
∥δi∥≤e

1
n

n∑
i=1

l(f (xi + δi , z), yi ),

where δi – the so-called adversarial noise.
It is very expensive to calculate the full gradient for such problems, therefore
stochastic approaches are used.
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Assumptions

Definition (Cocoercivity)
Each operator Fi is ℓ-cocoercive, i.e. for all u, v ∈ Rd we have

∥Fi (u)− Fi (v)∥2 ≤ ℓ⟨Fi (u)− Fi (v), u − v⟩.

This assumption is somehow a more restricted analogue of the Lipschetzness of
Fi . For convex minimization problems, ℓ-Lipschitzness and ℓ-cocoercivity are
equivalent.

Definition (Strong monotonicity)
The operator F is µ-strongly monotone, i.e. for all u, v ∈ Rd we have

⟨F (u)− F (v); u − v⟩ ≥ µ∥u − v∥2.

For minimization problems this property means strong convexity, and for saddle
point problems strong convexity–strong concavity.
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Stochastic Methods

zk+1 = zk − ηvk ,

where η > 0 is a predefined step-size.
• SGD or SGDA:

vk = Fi (z
k),

where i ∈ [n] is chosen randomly.
• SVRG or SVRGA:

vk = Fi (z
k)− Fi (w

k) + F (wk),

where i ∈ [n] is chosen randomly, wk is a reference point, which is rarely
updated.

• SARAH:
vk = Fi (z

k)− Fi (z
k−1) + vk−1,

where i ∈ [n] is chosen randomly.
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Algorithm

Algorithm SARAH for Stochastic Cocoercive Variational Inequalities

1: Parameters: Stepsize γ > 0, number of iterations K ,S .
2: Initialization: Choose z̃0 ∈ Rd .
3: for s = 1, 2, . . . ,S do
4: z0 = z̃ s−1

5: v0 = F (z0)
6: z1 = z0 − γv0

7: for k = 1, 2, . . . ,K − 1 do
8: Sample ik independently and uniformly from [n]
9: vk = Fik (z

k)− Fik (z
k−1) + vk−1

10: zk+1 = zk − γvk

11: end for
12: z̃ s = zK

13: end for
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Convergence

Theorem

Suppose that Assumptions on cocoercivity and strong monotonicity hold.
Consider SARAH Algorithm with γ = 2

9ℓ and K = 10ℓ
µ . Then, we have

E[∥F (z̃ s)∥2] ≤ 1
2
E[∥F (z̃ s−1)∥2].

Corollary
Suppose that Assumptions on cocoercivity and strong monotonicity hold.
Consider SARAH Algorithm with γ = 2

9ℓ and K = 10ℓ
µ . Then, to achieve

ε-solution (E∥F (z̃S)∥2 ∼ ε2), we need

O
([

n +
ℓ

µ

]
log2

∥F (z0)∥2

ε2

)
oracle calls.
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Experiments

• We conduct our experiments on a finite-sum bilinear saddle point problem:

g(x , y) =
1
n

n∑
i=1

[
gi (x , y) = x⊤Aiy + a⊤i x + b⊤i y +

λ

2
∥x∥2 − λ

2
∥y∥2

]
,

where Ai ∈ Rd×d , ai , bi ∈ Rd . This problem is λ-strongly convex–strongly
concave and, moreover, L-smooth with L = ∥A∥2 for A = 1

n

∑n
i=1 Ai . We

take n = 10, d = 100 and generate matrix A and vectors ai , bi randomly,
λ = 1. For this problem the cocoercivity constant ℓ = ∥A∥2

2
λ . We run three

experiment setups: with small ℓ ≈ 102, medium ℓ ≈ 103 and big ℓ ≈ 104.
• We use SGD, SVRG for comparison with SARAH. The steps of the methods

are selected for best convergence. For SVRG and SARAH the number of
iterations for the inner loops is taken as ℓ

λ .
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Experiments
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Figure: Bilinear problem: Comparison of state-of-the-art SGD-based methods for
stochastic cocoercive VIs.
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