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Distributed Variational Inequalities

Definition
Findz 2RY suchthathF(z );z z i+g(z) g(z) 0; 82 2RY;
where F : R B RY is an operator, and g : R ¥ R [ f+1.g is a proper lower

semicontinuous convex function. We assume that the training data describing F is
distributed across M workers/nodes/clients

3K
FO 7 @),

m=1

where F, : RY B RY for all m 2 £1;2;:::; Mg.
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Distributed Variational Inequalities

Minimization problem:
min f (z) + g (2):
z2Rd
def

We can take F(z) = rf(2).
Saddle point problem:

min max gi(x) +f(x;y) ga(y):
X2R% y 2RIy

Here F(2) &ef Fy) =Irxf(xy); rmyf(xy)l
Examples: adversarial training/robust optimization, GANs, RL, image
denoising, SVM, Lagrange multipliers.

Fixed point problem:
Findz 2RY suchthat T(z )=z ;

where T : RY ¥ RY is an operator. We can take F(z) =z T (2).
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Definition (Lipschitzness)

The operator F is L-Lipschitz continuous, i.e. for all z1;z, 2 RY we have
kF(z;) F(z2)k Lkzy 2zk:

For saddle point problems, these properties are equivalent to smoothness.

Definition (Strong monotonicity)

The operator F is -strongly monotone, i.e. for all z;;2, 2 RY we have
hWF(z1) F(z2);z1 2oi kz; zok?:

For saddle point problems, these properties are equivalent to convexity.
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Definition (J-relatedness)

Each operator F, is -related. It means that each operator F, F is -Lipschitz
continuous, i.e. for all u;v 2 RY we have
kFm(u) F@) Fn(v)+F(v)k ku vk:

For minimization problems:
kr3f(z) r*.@)k
For saddle point problems:
krgfoay)  rgfmGGy)k

kg fy)  rafa(ay)k
krg, fOGy) i fm(x;y)k

For uniform splitting of the data = 0O éﬁ , where b is the number of local
data points on each of the workers.
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Optimistic MASHA

Algorithm 1 Optimistic MASHA

. Parameters: Stepsize v > 0, parameter 7, number of iterations K.
2: Initialization: Choose :° = «° € Z.
Server sends to devices 2% = w® = w™! and devices compute F,,L(:O) and send to

server and get F(z°

for each device m in parallel do

6: Compute F,,L(:k)

T 0k, = Fn(2%) = Fn(w*™1) + a[Fm (%) = Fn(2"71)]
8: Send Qp (6 m) to server

9: end for

10: for server do

11: (‘(uupnto = Z Qm(0F,) and send to devices

12: Sends to dcu(ua br: 1 with probability v, 0 with. probability 1 —~
13: end for

14: for each dev ice m in parallel do

15: AF = L z QWY (S5) + F(uwk™h)

16: Pl = prox,, (= k+",(r'k—zk)—uAk)

17: if by =1 theu

18 ll'k ! = "k

19: Compute Fy,(w®1) and send it to server

20: Get F(wh) as a ](‘hp\ll].\‘(‘ from server

21: else

22: whtl =

23: end if

24: end for

25: end for
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Optimistic MASHA: Permutation compressors

Definition (Permutation compressors [5])

ford M. Assumethatd M andd =gM, where q 1 is an integer. Let

and each m 2 f1;2;:::; Mg we define

def XK
Qm(u) = M u.e,:

i=q(m 1)+1
ford M. AssumethatM d;M >1and M =qd, whereq 1isan
number occurs precisely q times. Let = ( 1;:::; M) be a random permutation
of S. Then for all u 2 RY and each m 2 f1;2;:::; Mg we define

def

Qm(u) =du e .:
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Convergence of Optimistic MASHA

Let Assumption on Lipschitzness, strong monotonicity and -relatedness are

satisfied. Then for some step and momentums and the following estimates

on Optimistic MASHA number of bits to achieve "-solution holds

L 1
© w TPy 1=
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comparison

Table: Summary of complexities on the number of transmitted information for different approaches to
communication bottleneck.

Notation: = constant of strong monotonicity of the operator F, L = Lipschitz constant of the operator
F, = relatedness constant, M = number of devices, b = local data size, " = precision of the solution.
Method Reference | Technique | Amount of information If § ~ %
Extra Gradient [4, 2] o (i log %) o (ﬁ log %)
SMMDS [3] similarity o (g log g) o (% ~Llog g)
MASHA [1] compression o (\/%” og é) o] (ﬁ - log %)
Optimistic MASHA | This work C(Jsm:g?ftljn o ([ﬁ + ﬁu] log %) o ([ﬁ + ﬁ] t log é)
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Experiments: Toy for Theory Verification

Bilinear saddle point problem:

def 1 >
min max g(x;y) = — ogm(X;y) with
X2Rdx y2RdYy M m=1

In(X;y) & xZAny +a>x + b3y + kxk2 fkykz;

where Ay, 2 RY 9 an; by, 2 RY. This problem is —strongly @nvex—strongly
concave and, moreover, L-smooth with L = kAky for A = M 1 Am. We
take M = 10, d = 100 and generate matrix A (with kAka 100) and vectors
am; bm randomly. We also generate matrices By, such that all elements of
these matrices are independent and have an unbiased normal distribution
with variance 2. Using these matrices, we compute Ay, = A+ Bp,. It can be
considered that . In particular, we run three experiment setups: with
small %, medium kAks. is chosen as %.
We use the new algorithm — Optimistic MASHA, the existing compression
algorithm MASHA [1], and the classic uncompressed Extra Gradient [4, 2] as
competitors. In Optimistic MASHA and MASHA we use the Permutation
compressors.
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