
Compression and Data Similarity: Combination of Two
Techniques for Communication-Efficient Solving of

Distributed Variational Inequalities

Aleksandr Beznosikov

MIPT

26 September 2022

Aleksandr Beznosikov Compression and Data Similarity 26 September 2022 1 / 11



Distributed Variational Inequalities

Definition

Find z∗ ∈ Rd such that ⟨F (z∗), z − z∗⟩ + g(z) − g(z∗) ≥ 0, ∀z ∈ Rd ,

where F : Rd → Rd is an operator, and g : Rd → R ∪ {+∞} is a proper lower
semicontinuous convex function. We assume that the training data describing F is
distributed across M workers/nodes/clients

F (z)
def
=

1
M

M∑
m=1

Fm(z),

where Fm : Rd → Rd for all m ∈ {1, 2, . . . ,M}.

Figure: Centralized Distributed/Federated Learning
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Distributed Variational Inequalities

• Minimization problem:

min
z∈Rd

f (z) + g(z).

We can take F (z)
def
= ∇f (z).

• Saddle point problem:

min
x∈Rdx

max
y∈Rdy

g1(x) + f (x , y) − g2(y).

Here F (z)
def
= F (x , y) = [∇x f (x , y),−∇y f (x , y)].

Examples: adversarial training/robust optimization, GANs, RL, image
denoising, SVM, Lagrange multipliers.

• Fixed point problem:

Find z∗ ∈ Rd such that T (z∗) = z∗,

where T : Rd → Rd is an operator. We can take F (z) = z − T (z).
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Assumptions

Definition (Lipschitzness)

The operator F is L-Lipschitz continuous, i.e. for all z1, z2 ∈ Rd we have
∥F (z1) − F (z2)∥ ≤ L∥z1 − z2∥.

For saddle point problems, these properties are equivalent to smoothness.

Definition (Strong monotonicity)

The operator F is µ-strongly monotone, i.e. for all z1, z2 ∈ Rd we have
⟨F (z1) − F (z2), z1 − z2⟩ ≥ µ∥z1 − z2∥2.

For saddle point problems, these properties are equivalent to convexity.
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Assumptions

Definition (δ-relatedness)

Each operator Fm is δ-related. It means that each operator Fm − F is δ-Lipschitz
continuous, i.e. for all u, v ∈ Rd we have
∥Fm(u) − F (u) − Fm(v) + F (v)∥ ≤ δ∥u − v∥.

For minimization problems:

∥∇2f (z) −∇2fm(z)∥ ≤ δ,

For saddle point problems:

∥∇2
xx f (x , y) −∇2

xx fm(x , y)∥ ≤ δ,

∥∇2
xy f (x , y) −∇2

xy fm(x , y)∥ ≤ δ,

∥∇2
yy f (x , y) −∇2

yy fm(x , y)∥ ≤ δ.

For uniform splitting of the data δ = Õ
(

L√
b

)
, where b is the number of local

data points on each of the workers.
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Optimistic MASHA
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Optimistic MASHA: Permutation compressors

Definition (Permutation compressors [5])

• for d ≥ M. Assume that d ≥ M and d = qM, where q ≥ 1 is an integer. Let
π = (π1, . . . , πd) be a random permutation of {1, . . . , d}. Then for all u ∈ Rd

and each m ∈ {1, 2, . . . ,M} we define

Qm(u)
def
= M ·

qm∑
i=q(m−1)+1

uπi eπi .

• for d ≤ M. Assume that M ≥ d , M > 1 and M = qd , where q ≥ 1 is an
integer. Define the multiset S def

= {1, . . . , 1, 2, . . . , 2, . . . , d , . . . , d}, where each
number occurs precisely q times. Let π = (π1, . . . , πM) be a random permutation
of S . Then for all u ∈ Rd and each m ∈ {1, 2, . . . ,M} we define

Qm(u)
def
= duπmeπm .
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Convergence of Optimistic MASHA

Theorem

Let Assumption on Lipschitzness, strong monotonicity and δ-relatedness are
satisfied. Then for some step η and momentums α and γ the following estimates
on Optimistic MASHA number of bits to achieve ε-solution holds

O

([
L

Mµ
+

δ√
Mµ

]
log

1
ε

)

Aleksandr Beznosikov Compression and Data Similarity 26 September 2022 8 / 11



Convergence: comparison

Table: Summary of complexities on the number of transmitted information for different approaches to
communication bottleneck.
Notation: µ = constant of strong monotonicity of the operator F , L = Lipschitz constant of the operator
F , δ = relatedness constant, M = number of devices, b = local data size, ε = precision of the solution.

Method Reference Technique Amount of information If δ ∼ L√
b

Extra Gradient [4, 2] O
(

L
µ
log 1

ε

)
O

(
L
µ
log 1

ε

)
SMMDS [3] similarity O

(
δ
µ
log 1

ε

)
O

(
1√
b
· L
µ
log 1

ε

)
MASHA [1] compression O

(
L√
Mµ

log 1
ε

)
O

(
1√
M

· L
µ
log 1

ε

)
Optimistic MASHA This work

compression
similarity O

([
L

Mµ
+ δ√

Mµ

]
log 1

ε

)
O

([
1
M

+ 1√
Mb

]
· L
µ
log 1

ε

)
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Experiments: Toy for Theory Verification

• Bilinear saddle point problem:

min
x∈Rdx

max
y∈Rdy

g(x , y)
def
=

1
M

M∑
m=1

gm(x , y) with

gm(x , y)
def
= x⊤Amy + a⊤mx + b⊤my +

λ

2
∥x∥2 − λ

2
∥y∥2,

where Am ∈ Rd×d , am, bm ∈ Rd . This problem is λ-strongly convex–strongly
concave and, moreover, L-smooth with L = ∥A∥2 for A = 1

M

∑M
m=1 Am. We

take M = 10, d = 100 and generate matrix A (with ∥A∥2 ≈ 100) and vectors
am, bm randomly. We also generate matrices Bm such that all elements of
these matrices are independent and have an unbiased normal distribution
with variance σ2. Using these matrices, we compute Am = A + Bm. It can be
considered that δ ∼ σ. In particular, we run three experiment setups: with
small σ ≈ ∥A∥2

100 , medium σ ≈ ∥A∥2
10 and big σ ≈ ∥A∥2. λ is chosen as ∥A∥2

105 .
• We use the new algorithm – Optimistic MASHA, the existing compression

algorithm MASHA [1], and the classic uncompressed Extra Gradient [4, 2] as
competitors. In Optimistic MASHA and MASHA we use the Permutation
compressors.
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Experiments: Bilinear Saddle Point Problem
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Figure: Bilinear problem: Comparison of state-of-the-art methods with compression for
variational inequalities for small, medium and big similarity parameters.
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