Compression and Data Similarity: Combination of Two Techniques for Communication-Efficient Solving of Distributed Variational Inequalities

Aleksandr Beznosikov

MIPT

26 September 2022

Distributed Variational Inequalities

Definition

Find
$$z^* \in \mathbb{R}^d$$
 such that $\langle F(z^*), z-z^*
angle + g(z) - g(z^*) \geq 0, \; orall z \in \mathbb{R}^d$

where $F : \mathbb{R}^d \to \mathbb{R}^d$ is an operator, and $g : \mathbb{R}^d \to \mathbb{R} \cup \{+\infty\}$ is a proper lower semicontinuous convex function. We assume that the training data describing F is *distributed* across M workers/nodes/clients

$$F(z) \stackrel{\text{def}}{=} rac{1}{M} \sum_{m=1}^{M} F_m(z),$$

where $F_m : \mathbb{R}^d \to \mathbb{R}^d$ for all $m \in \{1, 2, \dots, M\}$.

Figure: Centralized Distributed/Federated Learning

Aleksandr Beznosikov

Compression and Data Similarity

Distributed Variational Inequalities

• Minimization problem:

 $\min_{z\in\mathbb{R}^d}f(z)+g(z).$

We can take $F(z) \stackrel{\text{def}}{=} \nabla f(z)$.

• Saddle point problem:

$$\min_{x\in\mathbb{R}^{d_x}}\max_{y\in\mathbb{R}^{d_y}}g_1(x)+f(x,y)-g_2(y).$$

Here $F(z) \stackrel{\text{def}}{=} F(x, y) = [\nabla_x f(x, y), -\nabla_y f(x, y)].$ Examples: adversarial training/robust optimization, GANs, RL, image denoising, SVM, Lagrange multipliers.

• Fixed point problem:

Find
$$z^* \in \mathbb{R}^d$$
 such that $T(z^*) = z^*$,

where $T : \mathbb{R}^d \to \mathbb{R}^d$ is an operator. We can take F(z) = z - T(z).

Definition (Lipschitzness)

The operator F is *L*-Lipschitz continuous, i.e. for all $z_1, z_2 \in \mathbb{R}^d$ we have $\|F(z_1) - F(z_2)\| \le L \|z_1 - z_2\|$.

For saddle point problems, these properties are equivalent to smoothness.

Definition (Strong monotonicity)

The operator F is μ -strongly monotone, i.e. for all $z_1, z_2 \in \mathbb{R}^d$ we have $\langle F(z_1) - F(z_2), z_1 - z_2 \rangle \ge \mu ||z_1 - z_2||^2$.

For saddle point problems, these properties are equivalent to convexity.

Definition (δ -relatedness)

Each operator F_m is δ -related. It means that each operator $F_m - F$ is δ -Lipschitz continuous, i.e. for all $u, v \in \mathbb{R}^d$ we have $\|F_m(u) - F(u) - F_m(v) + F(v)\| \le \delta \|u - v\|.$

For minimization problems:

$$\|\nabla^2 f(z) - \nabla^2 f_m(z)\| \leq \delta,$$

For saddle point problems:

$$\begin{split} \|\nabla_{xx}^2 f(x,y) - \nabla_{xx}^2 f_m(x,y)\| &\leq \delta, \\ \|\nabla_{xy}^2 f(x,y) - \nabla_{xy}^2 f_m(x,y)\| &\leq \delta, \\ \|\nabla_{yy}^2 f(x,y) - \nabla_{yy}^2 f_m(x,y)\| &\leq \delta. \end{split}$$

For uniform splitting of the data $\delta = \tilde{O}\left(\frac{L}{\sqrt{b}}\right)$, where *b* is the number of local data points on each of the workers.

5/11

Optimistic MASHA

Algorithm 1 Optimistic MASHA

- 1: **Parameters:** Stepsize $\gamma > 0$, parameter τ , number of iterations K.
- 2: Initialization: Choose $z^0 = w^0 \in \mathcal{Z}$.
- 3: Server sends to devices $z^0 = w^{-1}$ and devices compute $F_m(z^0)$ and send to server and get $F(z^0)$
- 4: for $k = 0, 1, 2, \dots, K 1$ do
- 5: for each device *m* in parallel do
- 6: Compute $F_m(z^k)$
- 7: $\delta_m^k = F_m(z^k) F_m(w^{k-1}) + \alpha [F_m(z^k) F_m(z^{k-1})]$
- 8: Send $Q_m\left(\delta_m^k\right)$ to server

9: end for

11: Compute
$$\frac{1}{M} \sum_{m=1}^{M} Q_m(\delta_m^k)$$
 and send to devices

12: Sends to devices b_k : 1 with probability γ , 0 with. probability $1 - \gamma$

13: end for

14: for each device m in parallel do

15:
$$\Delta^{k} = \frac{1}{M} \sum_{m=1}^{M} Q_{m}^{\text{dev}}(\delta_{m}^{k}) + F(w^{k-1})$$

16:
$$z^{\kappa+1} = \operatorname{prox}_{\eta g} \left(z^{\kappa} + \gamma (w^{\kappa} - z^{\kappa}) - \eta \Delta^{\kappa} \right)$$

17: If
$$b_k = 1$$
 then
18: $w^{k+1} = z^k$

19: Compute
$$F_m(w^{k+1})$$
 and send it to server

20: Get
$$F(w^{k+1})$$
 as a response from server

22:
$$w^{k+1} = w^k$$

6/11

Definition (Permutation compressors [5])

• for $d \ge M$. Assume that $d \ge M$ and d = qM, where $q \ge 1$ is an integer. Let $\pi = (\pi_1, \ldots, \pi_d)$ be a random permutation of $\{1, \ldots, d\}$. Then for all $u \in \mathbb{R}^d$ and each $m \in \{1, 2, \ldots, M\}$ we define

$$Q_m(u) \stackrel{\mathsf{def}}{=} M \cdot \sum_{i=q(m-1)+1}^{qm} u_{\pi_i} e_{\pi_i}.$$

• for $d \leq M$. Assume that $M \geq d$, M > 1 and M = qd, where $q \geq 1$ is an integer. Define the multiset $S \stackrel{\text{def}}{=} \{1, \ldots, 1, 2, \ldots, 2, \ldots, d, \ldots, d\}$, where each number occurs precisely q times. Let $\pi = (\pi_1, \ldots, \pi_M)$ be a random permutation of S. Then for all $u \in \mathbb{R}^d$ and each $m \in \{1, 2, \ldots, M\}$ we define

$$Q_m(u) \stackrel{\mathsf{def}}{=} du_{\pi_m} e_{\pi_m}$$

Theorem

Let Assumption on Lipschitzness, strong monotonicity and δ -relatedness are satisfied. Then for some step η and momentums α and γ the following estimates on Optimistic MASHA number of bits to achieve ε -solution holds

$$O\left(\left[rac{L}{M\mu}+rac{\delta}{\sqrt{M}\mu}
ight]\lograc{1}{arepsilon}
ight)$$

Table: Summary of complexities on the number of transmitted information for different approaches to communication bottleneck.

Notation: μ = constant of strong monotonicity of the operator *F*, *L* = Lipschitz constant of the operator *F*, δ = relatedness constant, *M* = number of devices, *b* = local data size, ε = precision of the solution.

Method	Reference	Technique	Amount of information	If $\delta \sim \frac{L}{\sqrt{b}}$
Extra Gradient	[4, 2]		$O\left(rac{L}{\mu}\lograc{1}{arepsilon} ight)$	$O\left(\frac{L}{\mu}\log \frac{1}{\varepsilon}\right)$
SMMDS	[3]	similarity	$O\left(rac{\delta}{\mu}\lograc{1}{arepsilon} ight)$	$O\left(rac{1}{\sqrt{b}}\cdotrac{L}{\mu}\lograc{1}{arepsilon} ight)$
MASHA	[1]	compression	$O\left(\frac{L}{\sqrt{M}\mu}\log\frac{1}{\varepsilon}\right)$	$O\left(\frac{1}{\sqrt{M}}\cdot \frac{L}{\mu}\log \frac{1}{\varepsilon}\right)$
Optimistic MASHA	This work	compression similarity	$O\left(\left[\frac{L}{M\mu} + \frac{\delta}{\sqrt{M}\mu}\right]\log\frac{1}{\varepsilon}\right)$	$O\left(\left[\frac{1}{M}+\frac{1}{\sqrt{Mb}}\right]\cdot\frac{L}{\mu}\log\frac{1}{\varepsilon}\right)$

(日) (同) (日) (日)

Experiments: Toy for Theory Verification

• Bilinear saddle point problem:

$$\begin{split} \min_{x \in \mathbb{R}^{d_x}} \max_{y \in \mathbb{R}^{d_y}} g(x, y) \stackrel{\text{def}}{=} \frac{1}{M} \sum_{m=1}^M g_m(x, y) \quad \text{with} \\ g_m(x, y) \stackrel{\text{def}}{=} x^\top A_m y + a_m^\top x + b_m^\top y + \frac{\lambda}{2} \|x\|^2 - \frac{\lambda}{2} \|y\|^2, \end{split}$$

where $A_m \in \mathbb{R}^{d \times d}$, $a_m, b_m \in \mathbb{R}^d$. This problem is λ -strongly convex-strongly concave and, moreover, L-smooth with $L = ||A||_2$ for $A = \frac{1}{M} \sum_{m=1}^{M} A_m$. We take M = 10, d = 100 and generate matrix A (with $||A||_2 \approx 100$) and vectors a_m, b_m randomly. We also generate matrices B_m such that all elements of these matrices are independent and have an unbiased normal distribution with variance σ^2 . Using these matrices, we compute $A_m = A + B_m$. It can be considered that $\delta \sim \sigma$. In particular, we run three experiment setups: with small $\sigma \approx \frac{\|A\|_2}{100}$, medium $\sigma \approx \frac{\|A\|_2}{10}$ and big $\sigma \approx \|A\|_2$. λ is chosen as $\frac{\|A\|_2}{105}$. • We use the new algorithm - Optimistic MASHA, the existing compression algorithm MASHA [1], and the classic uncompressed Extra Gradient [4, 2] as competitors. In Optimistic MASHA and MASHA we use the Permutation compressors.

Aleksandr Beznosikov

10/11

Experiments: Bilinear Saddle Point Problem

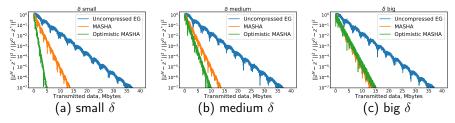


Figure: Bilinear problem: Comparison of state-of-the-art methods with compression for variational inequalities for small, medium and big similarity parameters.

< □ > < 同

Aleksandr Beznosikov, Peter Richtárik, Michael Diskin, Max Ryabinin, and Alexander Gasnikov.

Distributed methods with compressed communication for solving variational inequalities, with theoretical guarantees.

arXiv preprint arXiv:2110.03313, 2021.

Aleksandr Beznosikov, Valentin Samokhin, and Alexander Gasnikov. Local sgd for saddle-point problems. arXiv preprint arXiv:2010.13112, 2020.

 Aleksandr Beznosikov, Gesualdo Scutari, Alexander Rogozin, and Alexander Gasnikov.
 Distributed saddle-point problems under data similarity.
 Advances in Neural Information Processing Systems, 34, 2021.

Anatoli Juditsky, Arkadii S. Nemirovskii, and Claire Tauvel. Solving variational inequalities with stochastic mirror-prox algorithm, 2008.

Rafał Szlendak, Alexander Tyurin, and Peter Richtárik. Permutation compressors for provably faster distributed nonconvex optimization.

arXiv preprint arXiv:2110.03300, 2021.