INNOPOLIS
UNIVERSITY

First Order Methods with Markovian Noise:
from Acceleration to Variational Inequalities

Skoltech

Problem

- We study the minimization problem
$\min _{x \in \mathbb{R}^{d}} f(x):=\mathbb{E}_{Z \sim \pi}[F(x, Z)]$,
where the access to the function f and its gradient is available only through the noisy oracle $F(x, Z)$ and $\nabla F(x, Z)$, respectively.

> Setting

- The function f is L-smooth on \mathbb{R}^{d} with $L>0$, i.e., it is differentiable and there is a constant $L>0$ such that the following inequality holds for all $x, y \in \mathbb{R}^{d}$:

$$
\|\nabla f(x)-\nabla f(y)\| \leq L\|x-y\| .
$$

- The function f is μ-strongly convex on \mathbb{R}^{d}, i.e., it is - The function f is μ-strongly convex on \mathbb{R}, i.e., it is the following inequality holds for all $x, y \in \mathbb{R}^{d}$.
$\frac{\mu}{2}\|x-y\|^{2} \leq f(x)-f(y)-\langle\nabla f(y), x-y\rangle$.
We consider here the general setting of $\left\{Z_{i}\right\}_{i=0}^{\infty}$ being a timehomogeneous Markov chain.
- $\left\{Z_{i}\right\}_{i=0}^{\infty}$ is a stationary Markov chain on (Z, \mathcal{Z}) with Markov kernel Q and unique invariant distribution π. Moreover, Q is uniformly geometrically ergodic with mixing time $\tau \in \mathbb{N}$, i.e., for every $k \in \mathbb{N}$
$\Delta\left(\mathrm{Q}^{k}\right)=\sup _{z, z^{\prime} \in \mathrm{Z}}(1 / 2)\left\|\mathrm{Q}^{k}(z, \cdot)-\mathrm{Q}^{k}\left(z^{\prime}, \cdot\right)\right\|_{\mathrm{TV}} \leq(1 / 4)^{[k / \tau]}$
Next we specify our assumptions on stochastic gradient: - For all $x \in \mathbb{R}^{d}$ it holds that $\mathbb{E}_{\pi}[\nabla F(x, Z)]=\nabla f(x)$. Moreover, for all $z \in \mathbf{Z}$ and $x \in \mathbb{R}^{d}$ it holds that
$\|\nabla F(x, z)-\nabla f(x)\|^{2} \leq \sigma^{2}+\delta^{2}\|\nabla f(x)\|^{2}$.

Main Contributions

\diamond Accelerated SGD. We provide the first analysis of SGD, including the Nesterov accelerated SGD method, with Markov noise without the assumption of bounded domain and uniformly bounded stochastic gradient estimates. Our results are summarised in Table and cover both strongly convex and non-
convex scenarios
Lower bounds. We give the lower bounds showing that the presence of mixing time in the upper complexity bounds is not an artefact of the proof.
\diamond Extensions. We provide, as far as we know, the first analysis for variational inequalities with general stochastic Markov oracle, arbitrary optimization set, and arbitrary composite term. Our finite-time performance analysis provides complexity bounds in terms of oracle calls that scale linearly with the mixing time of the underlying chain.

> Algorithm

Algorithm 1 Randomized Accelerated GD
1: Parameters: stepsize $\gamma>0$, momentums θ, η, β, p,
Parameters: stepsize $\gamma>0$, momentums θ, η, β, p,
number of iterations N, batchsize limit M
2: Initialization: choose $x^{0}=x_{f}^{0}$
3: for $k=0,1,2, \ldots, N-1$ do
4: $\quad x_{g}^{k}=\theta x_{f}^{k}+(1-\theta) x^{k}$
5: \quad Sample $J_{k} \sim \operatorname{Geom}(1 / 2)$
6: $\quad g^{k}=g_{0}^{k}+ \begin{cases}2^{J_{k}}\left(g_{J_{k}}^{k}-g_{J_{k}-1}^{k}\right), & \text { if } 2^{J_{k}} \leq M \\ 0, & \text { otherwise }\end{cases}$
with $g_{j}^{k}=2^{-j} B^{-1} \sum_{i=1}^{2^{j} B} \nabla f\left(x_{g}^{k}, Z_{T^{k}+i}\right)$
$x_{f}^{k+1}=x_{g}^{k}-p \gamma g^{k}$
$g^{k}(p-\eta) x_{f}^{k}+(1-p)(1-\beta) x^{k}+(1-p) \beta x^{k}$
$\begin{array}{ll}\text { 8: } & x^{k+1}=\eta x_{f}^{k+1}+(p \\ \text { 9. } & T^{k+1}=T^{k}+2^{J_{k}} B\end{array}$
10: end for

Table 1: This table summarizes our results on first-order method with Markovian noise. The columns of the table indicate whether the authors consider optimization over bounded domain, potentially unbounded gradients, and whether or not they assume additional restrictions on the Markovian noise ffinite state space ar or reversibilitity). For ease of comparisison we provide the respective results on SGD and ASGD (accelerated SGD) in the i.i.d. setting.

 stochasticity parameter in $x^{*}, \varepsilon-$ accuracy of the solution, measured as $\mathbb{E}\left[\|\nabla f(x)\|^{2}\right] \lesssim \varepsilon^{2}$ for
Functions $h(L / \mu)$ and $h(G, L)$ stands for an implicit dependence of the respective parameters.

Key lemma

Let assumptions are valid.

$$
\mathbb{E}_{k}\left[g^{k}\right]=\mathbb{E}_{k}\left[g_{\left[\log _{2} M\right]}^{k}\right],
$$

$\mathbb{E}_{k}\left[\left\|\nabla f\left(x^{k}\right)-g^{k}\right\|^{2}\right] \lesssim\left(\tau B^{-1} \log _{2} M+\tau^{2} B^{-2}\right)\left(\sigma^{2}+\delta^{2}\left\|\nabla f\left(x^{k}\right)\right\|^{2}\right.$, $\left\|\nabla f\left(x^{k}\right)-\mathbb{E}_{k}\left[g^{k}\right]\right\|^{2} \lesssim \tau^{2} M^{-2} B^{-2}\left(\sigma^{2}+\delta^{2}\left\|\nabla f\left(x^{k}\right)\right\|^{2}\right)$.

Summary

$\diamond\left\|\nabla f\left(x^{k}\right)-\mathbb{E}_{k}\left[g^{k}\right]\right\|^{2} \sim M^{-}$
$\diamond M$ can be super big, but $\mathbb{E}\left[2^{J_{k}}\right]=\mathcal{O}(1)$.
\diamond It gives that $\left\|\nabla f\left(x^{k}\right)-\mathbb{E}_{k}\left[g^{k}\right]\right\|^{2}$ can be killed for free.

Convergence and complexity

Corolary Under conditions of Theorem, choosing $b=\tau$ and γ as

$$
\gamma \simeq \min \left\{\frac{1}{L} ; \frac{1}{p^{2} \mu N^{2}}\right\}
$$

in order to achieve ε-approximate solution (in terms of $\mathbb{E}[\| x$ $\left.x^{*} \|^{2}\right] \lesssim \varepsilon$) it takes

$$
\tilde{\mathcal{O}}\left(\tau\left[\left(1+\delta^{2}\right) \sqrt{\frac{L}{\mu}} \log \frac{1}{\varepsilon}+\frac{\sigma^{2}}{\mu^{2} \varepsilon}\right]\right)
$$

oracle calls.

Lower bounds
There exists an instance of the optimization problem satisfying assumptions with $\delta=1$ and arbitrary $\sigma \geq 0, L, \mu>0, \tau \in \mathbb{N}$ such that for any first-order gradient method it takes at least

$$
N=\Omega\left(\tau \sqrt{\frac{L}{\mu}} \log \frac{1}{\varepsilon}+\frac{\tau \sigma^{2}}{\mu^{2} \varepsilon}\right)
$$

oracle calls in order to achieve $\mathbb{E}\left[\left\|x^{N}-x^{*}\right\|^{2}\right] \leq \varepsilon$
There exists an instance of the optimization problem satisfying assumptions with arbitrary $L, \mu>0, \tau \in \mathbb{N}^{*}, \delta=\underline{L}$, and $\sigma=0$, such that for any first-order gradient method it takes at least

$$
N=\Omega\left(\tau \frac{L}{\mu} \log \frac{1}{\varepsilon}\right)
$$

gradient calls in order to achieve $\mathbb{E}\left[\left\|x^{N}-x^{*}\right\|^{2}\right] \leq \varepsilon$.
There exists an instance of the optimisation problem satisfying such that for

$$
N=\Omega\left(\left(\tau+\sqrt{\frac{L}{\mu}}\right) \log \frac{1}{\varepsilon}\right)
$$

oracle calls in order to achieve $\mathbb{E}\left[\left\|x^{N}-x^{*}\right\|^{2}\right] \leq$
Summary
\diamond Only for particular cases.
\diamond In particular cases lower bounds show the optimality of Algo-
rithm 1.
\diamond BUT Lower bounds in the general case remain an open ques-
tion, and thus the overall optimality of the proposed algorithm
is not proved.

References

1] H. Robbins \& S. Monro. A Stochastic Approximation Method. AMS, 1951 2) E. Moulines \& F Bach. Non-asymptotic analysis of stochastic anprovi E. Moulines \& F. Bach. Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. NeurIPS, 2011 algorithms for machine learning. NeurrPS, 2011
stochastic composite optimization. Mathematical Programming, 2016 [4] S. Vaswani et al. Fast and faster convergence of SGD for over-parameterized models and an accelerated perceptron. AISTATS, 2019.
5] Y. Chen et al. Convergence analysis of accelerated stochastic gradient descent under the growth condition. 2020
[6] J. Duchi et al. Ergodic mirror descent. SIAM 2012.
77 T. Sun et al. On Markov chain gradient descent. NeurIPS, 2018
[8] T. Doan. Finite-time analysis of markov gradient descent. IEEE, 2023
[9] T. Doan et al. Convergence rates of accelerated markov gradient descent with
applications in reinforcement learning. arXiv, 2020.
10] R. Dorfman \& K. Levy. Adapting to mixing time in stochastic optimization $11]$ M. Even. Stochastic gradient descent under Markovian sampling schemes.
arXiv, 2023.

