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Problem

• We study the minimization problem
minx∈Rd f (x) := EZ∼π[F (x, Z)] , (1)

where the access to the function f and its gradient is available only
through the noisy oracle F (x, Z) and ∇F (x, Z), respectively.

Setting

• The function f is L-smooth on Rd with L > 0, i.e., it is
differentiable and there is a constant L > 0 such that the following
inequality holds for all x, y ∈ Rd:

∥∇f (x) − ∇f (y)∥ ≤ L∥x − y∥.

• The function f is µ-strongly convex on Rd, i.e., it is
continuously differentiable and there is a constant µ > 0 such that
the following inequality holds for all x, y ∈ Rd:

µ

2
∥x − y∥2 ≤ f (x) − f (y) − ⟨∇f (y), x − y⟩ .

We consider here the general setting of {Zi}∞
i=0 being a time-

homogeneous Markov chain.
• {Zi}∞

i=0 is a stationary Markov chain on (Z, Z) with
Markov kernel Q and unique invariant distribution π. Moreover,
Q is uniformly geometrically ergodic with mixing time
τ ∈ N, i.e., for every k ∈ N,

△(Qk) = sup
z,z′∈Z

(1/2)∥Qk(z, ·) − Qk(z′, ·)∥TV ≤ (1/4)⌊k/τ⌋ .

Next we specify our assumptions on stochastic gradient:
• For all x ∈ Rd it holds that Eπ[∇F (x, Z)] = ∇f (x). Moreover,
for all z ∈ Z and x ∈ Rd it holds that

∥∇F (x, z) − ∇f (x)∥2 ≤ σ2 + δ2∥∇f (x)∥2 .

Main Contributions

⋄ Accelerated SGD. We provide the first analysis of SGD, in-
cluding the Nesterov accelerated SGD method, with Markov
noise without the assumption of bounded domain and uni-
formly bounded stochastic gradient estimates. Our results are
summarised in Table and cover both strongly convex and non-
convex scenarios.

⋄ Lower bounds. We give the lower bounds showing that the
presence of mixing time in the upper complexity bounds is not
an artefact of the proof.

⋄ Extensions. We provide, as far as we know, the first analy-
sis for variational inequalities with general stochastic Markov
oracle, arbitrary optimization set, and arbitrary composite
term. Our finite-time performance analysis provides complex-
ity bounds in terms of oracle calls that scale linearly with the
mixing time of the underlying chain.

Algorithm

Key lemma

Let assumptions are valid. Then for the gradient estimates gk from
Algorithm 1 it holds that

Ek[gk] = Ek[gk
⌊log2 M⌋],

Ek[∥∇f (xk) − gk∥2] ≲
(
τB−1 log2 M + τ 2B−2

)
(σ2 + δ2∥∇f (xk)∥2),

∥∇f (xk) − Ek[gk]∥2 ≲ τ 2M−2B−2(σ2 + δ2∥∇f (xk)∥2).

Summary

⋄ ∥∇f (xk) − Ek[gk]∥2 ∼ M−2.
⋄ M can be super big, but E[2Jk] = O(1).
⋄ It gives that ∥∇f (xk) − Ek[gk]∥2 can be killed for free.

Convergence and complexity

Theorem
Let assumptions are valid and let a problem be solved by Algo-
rithm 1. Then for any b ∈ N∗, γ ∈ (0; 3

4L], and β, θ, η, p, M, B
satisfying

p ≃ (1 + (1 + γL)[δ2τb−1 + δ2τ 2b−2])−1, β ≃
√

p2µγ,

η ≃
√

1
µγ, θ ≃ pη−1−1

βpη−1−1,

M ≃ max{2;
√

p−1(1 + p/β)}, B = ⌈b log2 M⌉,

it holds that

E
[
∥xN − x∗∥2 + 6

µ
(f (xN

f ) − f (x∗))
]

≲ exp


−N

√
p2µγ

3




[
∥x0 − x∗∥2 + 6

µ
(f (x0) − f (x∗))

]

+
p
√

γ

µ3/2

(
σ2τb−1 + σ2τ 2b−2

)
.

Corollary

Under the conditions of Theorem, choosing b = τ and γ as

γ ≃ min
{ 1

L
; 1
p2µN 2

}

in order to achieve ε-approximate solution (in terms of E[∥x −
x∗∥2] ≲ ε) it takes

Õ


τ


(1 + δ2)

√
L

µ
log 1

ε
+ σ2

µ2ε




 oracle calls .

Summary

⋄ Repeats the estimate for independent noise, but with an addi-
tional τ multiplier due to Markov oracle.

⋄ It is unclear whether this estimate is unprovable. It
may be possible to eliminate τ for some summands, i.e.,
Õ

(
(1 + δ2)

√
L
µ log 1

ε + τ σ2

µ2ε

)
.

Lower bounds

Theorem
There exists an instance of the optimization problem satisfying
assumptions with δ = 1 and arbitrary σ ≥ 0, L, µ > 0, τ ∈ N∗,
such that for any first-order gradient method it takes at least

N = Ω


τ

√
L

µ
log 1

ε
+ τσ2

µ2ε




oracle calls in order to achieve E[∥xN − x∗∥2] ≤ ε.

Theorem
There exists an instance of the optimization problem satisfying
assumptions with arbitrary L, µ > 0, τ ∈ N∗, δ = L

µ, and σ = 0,
such that for any first-order gradient method it takes at least

N = Ω
(

τ
L

µ
log 1

ε

)

gradient calls in order to achieve E[∥xN − x∗∥2] ≤ ε.

Theorem
There exists an instance of the optimisation problem satisfying
assumptions with with arbitrary L, µ > 0, τ ∈ N∗, σ = 1, δ = 0,
such that for any first-order gradient method it takes at least

N = Ω




τ +

√
L

µ


 log 1

ε




oracle calls in order to achieve E[∥xN − x∗∥2] ≤ ε.

Summary

⋄ Only for particular cases.
⋄ In particular cases lower bounds show the optimality of Algo-

rithm 1.
⋄ BUT Lower bounds in the general case remain an open ques-

tion, and thus the overall optimality of the proposed algorithm
is not proved.
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Algorithm 1 Randomized Accelerated GD

1: Parameters: stepsize � > 0, momentums ✓, ⌘, �, p,
number of iterations N , batchsize limit M

2: Initialization: choose x0 = x0
f

3: for k = 0, 1, 2, . . . , N � 1 do
4: xk

g = ✓xk
f + (1 � ✓)xk

5: Sample Jk ⇠ Geom (1/2)

6: gk = gk
0 +

⇢
2Jk

�
gk

Jk
� gk

Jk�1

�
, if 2Jk  M

0, otherwise

with gk
j = 2�jB�1

P2jB
i=1 rf(xk

g , ZT k+i)

7: xk+1
f = xk

g � p�gk

8: xk+1 = ⌘xk+1
f + (p � ⌘)xk

f + (1 � p)(1 � �)xk + (1 � p)�xk
g

9: T k+1 = T k + 2JkB
10: end for
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Table 1: This table summarizes our results on first-order method with Markovian noise. The columns of the table indicate whether the authors consider optimization over bounded
domain, potentially unbounded gradients, and whether or not they assume additional restrictions on the Markovian noise (finite state space or reversibility). For ease of comparison we
provide the respective results on SGD and ASGD (accelerated SGD) in the i.i.d. setting.

Unbounded

Method Domain Gradient
noise

General
MC Acceleration Oracle complexity

(Smooth and non-convex)
Oracle complexity

(Smooth and strongly convex)

i.i
.d

. SGD [1,2,3] 3 7 N/A 7 Õ
⇣

L(f(x0) � f(x⇤))
h

1
"2

+ �2

"4

i⌘
Õ

✓
L
µ log

kx0�x⇤k2

" + �2

µ2"

◆

ASGD [4,5] 3 3 N/A 3 Õ
⇣

L(f(x0) � f(x⇤))
h

1+�2

"2
+ �2

"4

i⌘
Õ

✓�
1 + �2

�q
L
µ log

kx0�x⇤k2

" + �2

µ2"

◆

M
ar

ko
vi

an

EMD [6] 7 7 3 7 Õ
⇣

⌧G2D2

"4

⌘
7

MC SGD [7] 3 7 7 7 Õ
✓

h(G, L)
⇣

⌧
"2

⌘1/(1�q)
◆

7

MC SGD [8] 3 3 3 7 Õ
✓

⌧L2(1+kx⇤k2+kx0�x⇤k2)

"4

◆
Õ

✓
e⌧(L/µ)2


h( L

µ ) log
kx0�x⇤k2

" +
⌧2L2(1+kx⇤k2)

µ2"

�◆

ASGD [9] 7 7 7 3 Õ
⇣

1
"4

⇥
B2 + G6(L2⌧2 + 1)

⇤⌘
Õ

✓q
L
µ

kx0�x⇤k2

"1/2
+

⌧2(G2+µGD+µLD2)

µ2"

◆

MAG [10] 3 7 3 7 Õ
✓

⌧(G+L+B)2G2

"4

◆
7

MC SGD [11] 3 7 7 7 O
✓

⌧(L(f(x0)�f(x⇤))+�2)

"2
+

⌧(L(f(x0)�f(x⇤))+�2)�2

"4

◆
O

✓
⌧L
µ log

(f(x0)�f(x⇤))/µ+�2/(µL)
" + ⌧�2

µ2"

◆

MC SGD [11] 3 7 7 7 7 O

✓
L
µ log

kx0�x⇤k2

" +
L⌧�2

⇤
µ3"

◆

RASGD (ours) 3 3 3 3 Õ
⇣
⌧L(f(x0) � f(x⇤))

h
1+�2

"2
+ �2

"4

i⌘
Õ

✓
⌧


(1 + �2)

q
L
µ log

kx0�x⇤k2

" + �2

µ2"

�◆

notation: G = supx,z krF (x, z)k. Note that G � L. We also set B = supx |f(x)|; x0 - starting point, x⇤ - solution, D - optimization domain; D = supx2D kx� x⇤k, �⇤ -
stochasticity parameter in x⇤, " - accuracy of the solution, measured as E[krf(x)k2] . "2 for non-convex problems and E[kx � x⇤k2] . " for the strongly convex ones.
Functions h(L/µ) and h(G, L) stands for an implicit dependence of the respective parameters.
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