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Distributed problem

• Variational inequality (VIPs) :
Find z∗ ∈ Z such that ⟨F (z∗), z − z∗⟩ ≥ 0 ∀z ∈ Z,

where F : Z → Rd is an operator, and Z ⊆ Rd is a convex set.

• Training data describing F is distributed across n devices/n-
odes:

F (z) = 1
n

n∑
i=1

Fi(z),

where Fi : Z → Rd for all i ∈ [n] := {1, 2, . . . , n}.

Examples

• Minimization problem:
min
z∈Z

f (z),

for which F (z) := ∇f (z).

• Saddle point problem:
min
x∈X

max
y∈Y

g(x1, x2),

for which F (z) := (∇xg(x, y), −∇yg(x, y)).

Communication bottleneck

Fight for efficient communications:

• Compression – send small packages.
Examples: QGD, DIANA, MARINA, EF, EF21

• Local steps – communicate less often
Examples: Local GD/FedAvg, FedProx, Scaffold, Scaffnew

• Similarity – use the closeness of local data
Examples: DANE, DiSCO, SPAG, SONATA

Setting

• Each operator Fi is L-Lipschitz continuous on Z , i.e. for all
u, v ∈ Z we have

∥Fi(u) − Fi(v)∥ ≤ L∥u − v∥.

• The operator F is µ-strongly monotone on Z , i.e. for all u, v ∈ Z
we have

⟨F (u) − F (v), u − v⟩ ≥ µ∥u − v∥2.

Each operator Fi is monotone on Z , i.e. µ = 0.

• The operators {Fi} is δ-related in mean on Z . It means that for
any j operators {Fi − Fj} and for all u, v ∈ Z we have

1
n

n∑
i=1

∥Fi(u) − Fj(u) − Fi(v) + Fj(v)∥2 ≤ δ2∥u − v∥2.

Hessian similarity: if the data is uniformly distributed between de-
vices then δ = Õ(L/

√
b), where b is the number of local data points

on each of the devices.
Minimization: ∥∇2fj(z) − ∇2fi(z)∥ ≤ δ,
SPP: ∥∇2

xxfj(x, y) − ∇2
xxfi(x, y)∥ ≤ δ,

∥∇2
xyfj(x, y) − ∇2

xyfi(x, y)∥ ≤ δ, ∥∇2
yyfj(x, y) − ∇2

yyfi(x, y)∥ ≤ δ.

Main Contributions

⋄ Three Pillars Algorithm. We present a new
method Three Pillars Algorithm that combines three ap-
proaches: compression, similarity, and local steps for the effi-
cient solution of distributed VI and SPP.

⋄ The best communication complexity. We analyze
the convergence of the new distributed algorithm for smooth
strongly monotone VI and strongly convex-strongly concave
SPP under similarity assumption. Our algorithm has better
communication complexity than all available competitors.

⋄ Extension with partial participation. We present a
modified version of our first method. Instead of compression,
one device is selected to send an uncompressed message.

⋄ Lower bounds. To demonstrate the optimality of our pro-
posed approaches, we establish lower bounds for the commu-
nication complexities.

⋄ Extension with stochastic local computations. Mo-
tivated by applications where computation is expensive, we
present a modification of the main algorithm that emphasizes
the use of stochastic operators in local computations.

Table: Summary of the results on the number of transmitted information in
different approaches to communication bottleneck for distributed VI/SPP.

Method Approach Communication complexity

Extra Gradient O
(

L
µ log 1

ε

)
Local SGDA local steps O

(
L2/5n2/5

µ2/5ε1/5 + Lζ
µ3/2√ε

)
FedAvg-S local steps O

(
L2

µ2 log 1
ε + Lζ

µ2√ε

)
SCAFFOLD-S local steps O

(
L2

µ2 log 1
ε

)
SCAFFOLD-Catalyst-S local steps O

(
L
µ log2 1

ε

)
ESTVGM local steps O

(
L
µ log 1

ε + Lζ
µ2√ε

)
SMMDS similarity

local steps O
([

1 + δ
µ

]
log 1

ε

)
MASHA compression O

(
L√
nµ

log 1
ε

)
Optimistic MASHA similarity

compression O
([

L
nµ + δ√

nµ

]
log 1

ε

)
Accelerated Extra Gradient similarity

local steps O
([

1 + δ
µ

]
log 1

ε

)
Algorithm 1 (this paper)

similarity
local steps

—- compression —
O
([

1 + δ√
nµ

]
log 1

ε

)

Algorithm 2 (this paper)
similarity

local steps
partial participation

O
([

1 + δ√
nµ

]
log 1

ε

)
Lower bound Ω

([
1 + δ

µ

]
log 1

ε

)
(1)

Lower bound (this paper)
similarity

local steps
—- compression —

Ω
([

1 + δ√
nµ

]
log 1

ε

)

Lower bound (this paper)
similarity

local steps
partial participation

Ω
([

1 + δ√
nµ

]
log 1

ε

)
(1) lower bound is deterministic and does not take into account the possibility of compres-
sion and partial participation. Notation: ζ = heterogeneity parameter, ε = precision of
the solution.

Algorithm

• Local problem. We can rewrite the original distributed prob-
lem as a composite problem of two terms: 1

n

∑n
i=1 fi(x) = [f1(x)] +

[ 1
n

∑n
i=1 fi(x) − f1(x)]. The proximal method works well for com-

posite problems with proximal-friendly functions (e.g, simple ℓ2 reg-
ularizer) where the calculation of the proximal operator is for free,
but, in the general case, the proximal operator is calculated by an
auxiliary method with another iteration loop inside the main algo-
rithm. The key idea in to use f1(x) for the proximal operator. This
implies the need of additional solving arg minx{f1(x) + λ∥x − xs∥},
where xs is some point. Note that no commutation is needed to
calculate the proximal operator as to solution needs access only to
f1 and can be solved locally. To extend the idea into VI , we use the
following (see the loop in line 3):

Find ûk ∈ Z such that ⟨G(ûk), z − ûk⟩ ≥ 0, ∀z ∈ Z
with G(z) = F1(z) + 1

γ(z − vk) and vk = zk + τ (mk − zk) − γ ·
(F (mk) − F1(mk)).

• Basic outer method. We need a basic method for solving the
composite VI. We selects the Tseng’s method for this task.

• Local method. Since the subproblem in the inner loop from line
3 in Algorithm is a VI with a strongly monotone and Lipschitz con-
tinuous operator, then it can be solved using the Extra Gradient
method.

• Use of compression. In order to use compression in the
method, an additional technique is also required. Following, we
take the idea of basing on the variance reduction technique. We
introduce a reference sequence {mk}k≥0. At point mk, we need to
know the full values of operator F . When mk is updated (line 10),
we transfer the full operators without compression (lines 12-14). If
probability p is small, mk is rarely modified and hence condition
from line 11 is satisfied with low probability.

• Compression operators. We use special compression to take
into account similarity.

Permutation compressors

For d ≥ n. Assume that d ≥ n and d = qn, where q ≥ 1 is
an integer. Let π = (π1, . . . , πd) be a random permutation of
{1, . . . , d}. Then for all u ∈ Rd and each i ∈ {1, 2, . . . , n} we
define Qi(u) = n ·

∑qi
j=q(i−1)+1uπj

eπj
.

• Summary. We use Tseng’s method for the composite VI, in-
accurately computing the resolvent (proximal operator) with the
Extra Gradient method. We use a variance reduction technique
for Tseng’s method, remade into a compression technique in dis-
tributed settings, and choose a special compression for similarity
setting.

Convergence

Theorem

Let {zk}k≥0 denote the iterates of the algorithm with PermK
compressors for solving the distributed VI problem, which sat-
isfies assumptions. Then, if we choose the stepsizes γ =
Õ(min{p

µ,
√

p

δ , H
L }), η = O((L + 1

γ)−1) and the momentum τ = p
then we have the convergence guarantee

E[∥zK − z∗∥2] ≤ 2
(

1 − γµ

2

)K

∥z0 − z∗∥2.

• Optimal choice of p. In Algorithm, one mandatory commu-
nication round with compression occurs (line 8) and possibly one
more (without compression) with probability p (line 13). Permu-
tation compressor compress by a factor of n; hence each iteration
requires O

(
1
n + p

)
data transfers from devices to the server on av-

erage. The optimal choice of p is 1
n, as stated in the corollary.

Corollary

Under the conditions of Theorem, the following number of the
outer iterations is needed to achieve the accuracy ε (in terms of
E[∥z − z∗∥2] ≲ ε) by Algorithm with p = 1

n:

O
([

n + δ
√

n

µ
+ L

µH

]
log ∥z0 − z∗∥2

ε

)
.

• Optimal choice of H. It is clear from the corollary that the
number of local H steps can improve the number of communications,
but there is a limit beyond which more iterations are not useful.
Taking H = ⌈ L

δ
√

n
⌉ is optimal.

• "Break" lower bounds. H from the previous paragraph yields
estimates of Õ(n + δ

√
n/µ) and Õ(1 + δ/

√
nµ) for the number of

communications and transmitted information, respectively. These
results are better than any existing methods and even superior to
lower bounds for deterministic methods.

Experiments

We conduct experiments on the robust linear regression problem.
This problem is defined as

min
w∈Rd

max
∥ri∥≤D

1
2N

N∑
i=1

(wT (xi + ri) − yi)2 + λ

2
∥w∥2 − β

2
∥r∥2,

where w are model weights, {xi, yi}N
i=1 is the training dataset and r is

artificially added noise. We consider a network with n = 25 devices
and two types of datasets: synthetic and real. Synthetic data allows
us to control the factor δ, which measures statistical similarity of
functions over different nodes. Our algorithms are compared with
methods from Table.
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Figure: Comparison of state-of-the-art methods for distributed VI. The comparison
is made on synthetic datasets with small, medium, and large δ, as well as the real
datasets a9a, w7a, w8a from LibSVM. The x-axis denotes the number of full
operators transmitted by one of the devices.


