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Statement

• Distributed saddle-point problem:

min
x∈X

max
y∈Y

f (x , y) :=
1
M

M∑
m=1

fm(x , y).

• Relevance: GANs [3], Reinforcement Learning [4], SVM, Distributed
and Federated Learning [5].

Figure: Centralized and
Decentralized Learning

Figure: Centralized Federated
Learning
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Assumptions

• Sets X ⊆ Rnx and Y ⊆ Rny are convex compact sets. For simplicity,
we introduce the set Z = X × Y, z = (x , y) and the operator F :

Fm(z) = Fm(x , y) =

(
∇x fm(x , y)
−∇y fm(x , y)

)
.

• We do not have access to the oracles for Fm(z), only to some
stochastic realisation Fm(z , ξ).
• fm is stored locally on its own device. All devices are connected in a

network (undirected graph G (V, E) with diameter ∆ and condition
number χ of Laplace matrix).

Aleksandr Beznosikov On Distributed Saddle-Point Problems 02 May 2021 3 / 17



Assumptions

• Assumption 1. f (x , y) is Lipschitz continuous with constant L, i.e.
for all z1, z2 ∈ Z

‖Fm(z1)− Fm(z2)‖ ≤ L‖z1 − z2‖.

• Assumption 2. f (x , y) is strongly-convex-strongly-concave with
constant µ, i.e. for all z1, z2 ∈ Z

〈F (z1)− F (z2), z1 − z2〉 ≥ µ‖z1 − z2‖2.

• Assumption 3. Fm(z , ξ) is unbiased and has bounded variance, i.e.
for all z ∈ Z

E[Fm(z , ξ)]=Fm(z), E[‖Fm(z , ξ)−Fm(z)‖2]≤σ2.

• Assumption 4. Z – compact bounded, i.e. for all z , z ′ ∈ Z

‖z − z ′‖ ≤ Ωz .

Aleksandr Beznosikov On Distributed Saddle-Point Problems 02 May 2021 4 / 17



Lower bounds

Lower bounds for distributed algorithms with K communications and T
local iterations. Achieved on a bilinear problem minx maxy x

TAy with
"bad" matrix.

centralized

sc Ω
(
R2

0 exp
(
−32µK

L∆

)
+ σ2

µ2MT

)
c Ω

(
LΩ2

z∆
K + σΩz√

MT

)
decentralized

sc Ω
(
R2

0 exp
(
−128µK

L
√
χ

)
+ σ2

µ2MT

)
c Ω

(
LΩ2

z
√
χ

K + σΩz√
MT

)
Table: Lower bounds for distributed smooth stochastic
strongly-convex–strongly-concave (sc) or convex-concave (c) saddle-point
problems in centralized and decentralized cases.
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Centralized Extra Step Method
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Convergence

Theorem
Let {zk}k≥0 denote the iterates of Algorithm 1. Let Assumptions 1, 3 be
satisfied. Then, if γ ≤ 1

4L , we have the following estimates for the distance
to the solution z∗ in
- µ-strongly-convex–strongly-concave case (Assumption 2):

E[‖zk+1−z∗‖2]=Õ
(
‖z0−z∗‖2exp

(
− µK

4L∆

)
+

σ2

µ2MT

)
,

- convex–concave case (Assumption 2 with µ = 0 and 4):

E[gap(zk+1
avg )] = O

(
LΩ2

z∆

K
+

σΩz√
MT

)
,

where zk+1
avg = 1

k+1

k∑
t=0

z t+1/2 and gap(z) = maxy ′ f (x , y ′)−minx ′ f (x ′, y).
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Decentralized Extra Step Method

Decentralized algorithms use mixing procedures [2], in this case FastMix [6].
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Convergence

Theorem
Let {zkm}k≥0 denote the iterates of Algorithm 2. Let Assumptions 1, 3 be
satisfied. Then, if γ ≤ 1

4L , we have the estimates for the distance to the
solution z∗ in
- µ-strongly-convex–strongly-concave case (Assumption 2):

E[‖z̄k+1−z∗‖2]=Õ
(
‖z0−z∗‖2exp

(
− µK

8L
√
χ

)
+

σ2

µ2MT

)
,

where z̄k+1 = 1
M

M∑
m=1

zk+1
m ,

- convex–concave case (Assumption 2 with µ = 0 and 4):

E[gap(z̄k+1
avg )] = Õ

(
LΩ2

z
√
χ

K
+

σΩz√
MT

)
, z̄k+1

avg =
1

M(k + 1)

k∑
t=0

M∑
m=1

z
t+1/2
m .
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Extra Step Local SGD

Assumption 5. The values of the local operator are considered sufficiently
close to the value of the mean operator, i.e. for all z ∈ Z

‖Fm(z)− F (z)‖ ≤ D.
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Convergence

Theorem
Let {zkm}k≥0 denote the iterates of Algorithm 3 and z̄ = z̄T+1 is an
output. Let Assumptions 1(l), 2, 3 and 5 be satisfied. Also let
H = maxp |kp+1 − kp| – maximum distance between moments of
communication (kp ∈ I ). Then, if γ ≤ 1

6HLmax
, we have the following

estimate for the distance to the solution z∗:

E[‖z̄T+1 − z∗‖2] ≤
(
1− µγ

2

)T
‖z̄0 − z∗‖2 +

20γσ2

µM

+
250γ2H3L2

max(2σ2 + D2)

µ2 .
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Convergence

Corollary

Let α = 12HLmax
µ , γ = 2

µα ≤
1

6HLmax
and T = α logα2, then we get:

E[‖z̄T+1 − z∗‖2] ≤ ‖z̄0 − z∗‖2 log2 α2

T 2 +
20σ2 logα2

µ2MT

+
250H3L2

max log2 α2(2σ2 + D2)

µ4T 2 .

It can be seen that if we take H = O(T 1/3/M1/3), we have a convergence
rate of about O(1/MT). The estimate for the number of communication
rounds is C = T/H = Ω(M1/3T 2/3).
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When Local method better that Optimal?

Bilinear problem:

minmax
x ,y∈[−1;1]n

1
M

M∑
m=1

(
xTAmy + bTmx + cTm y

)
,
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Figure: Left: comparison of Algorithm 3 with different communication frequencies
H, as well as Algorithm 1 with batch size 1 (blue line – "Every"). Right:
comparison of Algorithm 3 (L) with communication frequencies H = 3 and
Algorithm 1 (MB) with batch size 6.
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Federated GANs

The experiment simulates a classic federated learning setting:
• Each of the nodes has highly heterogeneous data. In the case of the

MNIST dataset, each node is given unique digits.
• Devices rarely communicate with server - once every 20 epochs.
• Privacy - devices do not send local data, but only model parameters.
• In spite of federated restrictions, a global models (generator and

discriminator) are trained with taking into account all local data.
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Federated GANs

Results of Federated GANs training:

Figure: Heterogeneous case (each device has its our unique digits). Digits
generated by global generator during training. 2 nodes, Local SGD (left) and 4
nodes, Local Adam (right).
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Federated GANs
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Figure: Generator empirical loss in
experiment with 2 nodes, Local
SGD, Hg = Hd = 20
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Figure: Generator empirical loss in
experiment with 4 nodes, Local
Adam Hg = Hd = 20
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Federated GANs
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Figure: Discriminator accuracy in
experiment with 2 nodes, Local
SGD, Hg = Hd = 20.
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Figure: Discriminator accuracy in
experiment with 4 nodes, Local Adam,
Hg = Hd = 20
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