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Variational Inequality

Definition (Stampacchia VIs)

Find z∗ ∈ Z such that ⟨F (z∗), z − z∗⟩+ g(z)− g(z∗) ≥ 0, ∀z ∈ Z,

where F : Rd → Rd is some operator and g is a proper convex lower
semicontinuous function.

Definition (Minty VIs)

Find z∗ ∈ Z such that ⟨F (z), z − z∗⟩+ g(z)− g(z∗) ≥ 0, ∀z ∈ Z,

where F : Rd → Rd is some operator and g is a proper convex lower
semicontinuous function.
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Variational Inequality: facts

• Two formulations are equivariant for smooth monotone operators.
• In the case when g ≡ 0 and Z = Rd , then VI is equal to

Find z∗ ∈ Z such that F (z) = 0.
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Variational Inequality: examples

• Minimization:

min
z∈Rd

f (z).

We take F (z)
def
= ∇f (z).

• Saddle point problem:

min
x∈Rdx

min
y∈Rdy

g(x , y).

Here F (z)
def
= F (x , y) = [∇xg(x , y),−∇yg(x , y)].

• Fixed point problem:

Find z∗ ∈ Rd such that T (z∗) = z∗,

where T : Rd → Rd is an operator. We take F (z) = z − T (z).
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Variational Inequality: classical examples

• Game theory and economy (comes from von Neumann). Simple
example – matrix game (bilinear sadddle point problem on simplexes):

min
x∈∆dx

max
y∈∆dy

xTAy ,

where A – cost matrix, x и y – probability of actions.
• Constrained optimization and Lagrange multipliers.
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Variational Inequality: ML example

• From classical minimization problem:

min
z∈Rd

1
n

n∑
i=1

l(f (xi , z), yi ),

where {xi , yi}ni=1 – data, f – model z , l – loss.
• To robust formulation via saddle point problem:

min
z∈Rd

max
∥δi∥≤e

1
n

n∑
i=1

l(f (xi + δi , z), yi ),

where δi – adversarial noise.
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Variational Inequality: GANs

• GAN represents two models generator G and discriminator D.
• D takes an element x as input and determines whether this element is

real (from a data sample) or artificially generated by the generator.
• The generator is given some random vector z as input, from which the

generator constructs a "fake" instance similar to the real sample.
• Formally, the GAN training problem is formulated as a saddle point

problem:

min
G

max
D

V (D,G ) = Ex∼pdata(x)[logD(x)] + Ez∼pz (z)[log(1 − D(G (z)))].
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Variational Inequality: method

• We know what to do with:

min
z∈Rd

f (z).

Gradient descent:
zk+1 = zk − γ∇f (zk).

• What to do with VIs and saddle point problems? The same idea –
descent-ascent:

zk+1 = zk − γF (zk).
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Variational Inequality: method

• The idea of descent-ascent isn’t bad and often works, but physical
intuition tells that it has some not-so-pleasant aspects.

• Consider minx∈R maxy∈R xy . With starting point (1, 1). Where is the
solution? Point (0, 0).

• Vector:
( ∇xg(xk ,yk )
−∇yg(xk ,yk )

)
is always orthogonal to

(xk−x∗

yk−y∗

)
. What does it

means? Method diverges.
• Intuition is not strict, but it can tell us to try something a little

different.
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Variational Inequality: Extragradient method

Algorithm Extragradient method

Вход: stepsize γ > 0, staring z0 ∈ Rd , number of iterations K
1: for k = 0, 1, . . . ,K − 1 do
2: zk+1/2 = zk − γF (zk)
3: zk+1 = zk − γF (zk+1/2)

4: end for

It is easy to check that for this method on the problem minx∈R maxy∈R xy ,
the directions of the final step in the scalar product with the direction to
the solution gives a number greater than 0, hence an acute angle.
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Contemporary challenges

• Exponential growth in model sizes and data volumes.

Figure: Dynamics of growth of modern language models

Figure: Dynamics of dataset growth
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Varieties of distributed learning

• Cluster learning (large players): we train within one large and powerful
computing cluster

• Collaborative learning (all players): pooling computing resources over
the Internet

• Federated learning (another paradigm): learn on users’ local data
using their computational power

Figure: Federated learning
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The most popular distributed setup

• Formulation (horizontal):

F (z) :=
1
M

M∑
m=1

Fm(z) :=
1
M

M∑
m=1

Eξ∼Dm [Fm(z , ξ)].

• The problem is shared among M computing devices, each device m
has access only to its own operator Fm or its stochastic realization.
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Communication setups

Figure: Centralized and decentralized connections
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Communicating through the server

• Let us look at an example of how Extragradient becomes centralized.

Algorithm Centralized Extragradient

Вход: Stepsize γ > 0, starting point z0 ∈ Rd , number of iterations K
1: for k = 0, 1, . . . ,K − 1 do
2: Send zk to all workers ▷ by server
3: for m = 1, . . . ,M in parallel do
4: Recieve zk from server ▷ by workers
5: Compute Fm(z

k) in zk ▷ by workers
6: Send Fm(z

k) to server ▷ by workers
7: end for
8: Recieve Fm(z

k) from all workers ▷ by server
9: Compute F (zk) = 1

M

∑M
m=1 Fm(z

k) ▷ by server
10: zk+1/2 = zk − γF (zk) ▷ by server
11: Similarly for zk+1

12: end for

• In the decentralized setting, it does not work, there is no server.
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Assumptions

• Assumption 1. Fm is Lipschitz with constant L, i.e. for all z1, z2 ∈ Z

∥Fm(z1)− Fm(z2)∥ ≤ L∥z1 − z2∥.

(smoothness)
• Assumption 2. Fm is strongly monotone with constant µ, i.e. for all
z1, z2 ∈ Z

⟨Fm(z1)− Fm(z2), z1 − z2⟩ ≥ µ∥z1 − z2∥2.

(strong convexity and strong-convexity-strong-concavity)
• Assumption 3. (for decentralized setting) Fm is stored locally on its

own device. All devices are connected in a network (undirected may be
time-varying graph Gk(Vk , Ek) with max diameter ∆ and max
condition number χ of Laplace matrix).
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Plan

• Deterministic case
• Stochastic: bounded variance
• Stochastic: finite sum
• Compression
• Similarity
• Similarity + compression
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Deterministic case

• We can compute full Fm on each device:

F (z) :=
1
M

M∑
m=1

Fm(z).

Aleksandr Beznosikov On Distributed Variational Inequalities 17 January 2024 18 / 47



Lower bounds

Lower bounds for distributed algorithms with K communications.

centralized

VIs Ω
(
R2

0 exp
(
−32µK

L

))
Minimization (exists) Ω

(
R2

0 exp
(
−

√
µK√
L

))
decentralized (fixed network)

VIs Ω
(
R2

0 exp
(
−128µK

L
√
χ

))
Minimization (exists) Ω

(
R2

0 exp
(
−

√
µK√
L
√
χ

))
decentralized (time-varying network)

VIs Ω
(
R2

0 exp
(
−128µK

Lχ

))
Minimization (exists) Ω

(
R2

0 exp
(
−

√
µK√
Lχ

))
Table: Lower bounds for distributed VIs.
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Lower bounds

• No "problem" acceleration (unlike minimization) since VIs is a broader
class of problems

• No "network" acceleration in the time-varying setting
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Lower bounds: idea

• Problem:

fm(x , y) =


f1(x , y) =

M
2|Bd | ·

L
2x

TA1y + µ
2 ∥x∥

2 − µ
2 ∥y∥

2 + M
2|Bd | ·

L2

2µe
T
1 y , m ∈ Bd

f2(x , y) =
M

2|B| ·
L
2x

TA2y + µ
2 ∥x∥

2 − µ
2 ∥y∥

2, m ∈ B

f3(x , y) =
µ
2 ∥x∥

2 − µ
2 ∥y∥

2, otherwise

.

where e1 = (1, 0 . . . , 0) and

A1 =



1 0
1 −2

1 0
1 −2

. . . . . .
1 −2

1 0
1


, A2 = analogically

• Network – chain
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Optimal algorithms

• In the centralized case, just Centralized Extragradient
• In the decentralized case, we can simulate server communication via

gossip procedures.

Algorithm FastMix

Parameters: Vectors z1, ..., zM , communic. rounds P .

Initialization: Construct matrix z with rows zT1 , ..., zTM ,

choose z−1 = z, z0 = z, η =
1−
√

1−λ2
2(W̃ )

1+
√

1−λ2
2(W̃ )

.

for h = 0, 1, 2, . . . ,P − 1 do
zh+1 = (1 + η)W̃ zh − ηzh−1,

end for
Output: rows z1, ..., zM of zP .
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Stochastic setting: bounded variance

• We can compute only stochastic realizations Fm(z , ξ) for each device:

F (z) :=
1
M

M∑
m=1

Fm(z) =
1
M

M∑
m=1

Eξ∼Dm [Fm(z , ξ)].

• Assumption. Fm(z , ξ) is unbiased and has bounded variance, i.e. for
all z ∈ Z

E[Fm(z , ξ)]=Fm(z), E[∥Fm(z , ξ)−Fm(z)∥2]≤σ2.
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Lower bounds

Lower bounds for distributed algorithms with K communications and T
local computations (T > K ).

centralized

VIs Ω
(
R2

0 exp
(
−32µK

L

)
+ σ2

µ2MT

)
Minimization (exists) Ω

(
R2

0 exp
(
−

√
µK√
L

)
+ σ2

µ2MT

)
decentralized (fixed network)

VIs Ω
(
R2

0 exp
(
−128µK

L
√
χ

)
+ σ2

µ2MT

)
Minimization (exists) Ω

(
R2

0 exp
(
−

√
µK√
L
√
χ
+ σ2

µ2MT

))
decentralized (time-varying network)

VIs Ω
(
R2

0 exp
(
−128µK

Lχ

)
+ σ2

µ2MT

)
Minimization (exists) Ω

(
R2

0 exp
(
−

√
µK√
Lχ

)
+ σ2

µ2MT

)
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Lower bounds: idea

• Consider
min
x∈R

f (x) =
µ

2
(x − x0)

2,

where we do not know the constant x0 ̸= 0.
• Using stochastic first order oracle

∇f (x , ξ) = µ(x + ξ − x0), where ξ ∈ N
(

0,
σ2

µ2

)
.
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Optimal algorithms: centralized

Batching as additional idea to the deterministic algorithm
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Optimal algorithms: decentralized
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Stochastic case: finite-sum

• We can compute full Fm on each device:

F (z) :=
1
M

M∑
m=1

Fm(z) =
1
M

M∑
m=1

1
n

n∑
i=1

Fm,i (z).

• But we don’t want to do it since expensive, we compute only random
part Fm,i .
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Lower bounds

Lower bounds for distributed algorithms with K communications and T
local computations.

centralized

VIs Ω
(
R2

0 exp
(
−32µK

L

)
+ R2

0 exp
(
−16µK√

nL

))
Minimization (exists) Ω

(
R2

0 exp
(
−

√
µK√
L

)
+ R2

0 exp
(
−

√
µK

√
n
√
L

))
decentralized (fixed network)

VIs Ω
(
R2

0 exp
(
−128µK

L
√
χ

)
+ R2

0 exp
(
−16µK√

nL

))
Minimization (exists) Ω

(
R2

0 exp
(
−

√
µK√
L
√
χ

)
+ R2

0 exp
(
−

√
µK

√
n
√
L

))
decentralized (time-varying network)

VIs Ω
(
R2

0 exp
(
−128µK

Lχ

)
+ R2

0 exp
(
−16µK√

nL

))
Minimization (exists) Ω

(
R2

0 exp
(
−

√
µK√
Lχ

)
+ R2

0 exp
(
−

√
µK

√
n
√
L

))
Table: Lower bounds for distributed VIs.
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Lower bounds: idea

• Double separation
• Random choice of batch
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Optimal algorithms: non-distributed with bathching

• New variance reduction algorithm
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Optimal algorithms: fixed network
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Optimal algorithms: fixed network
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Quantization and compression
Definition (Quantization)

A stochastic operator Q : Rd → Rd is called quantization if there exists a
constant q ≥ 1 such that

Q(z) = z , E∥Q(z)∥2 ≤ q∥z∥2, ∀z ∈ Rd .

Expected/average compression (how much less the compressed vector takes

up in memory): β−1 def
= E∥Q(z)∥bits

∥z∥|bits
. Note that β ≥ 1.

Examples: random selection of coordinates.
Definition (Compression)

(Stochastic) operator C : Rd → Rd is called compression if there exists
δ ≥ 1 such that

E∥C (z)− z∥2 ≤ (1 − 1/δ)∥z∥2, ∀z ∈ Rd .

Expected/average compression (how much less the compressed vector

occupies in memory): β−1 def
= E∥C(z)∥bits

∥z∥bits
. Отметим, что β ≥ 1.

Examples: Greedy choice of coordinates, low-rank decompositions,
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Ideas

• For example, quantized extragradient method

zk+1/2 = zk − γ · 1
M

M∑
m=1

Q1(Fm(z
k))

zk+1 = zk − γ · 1
M

M∑
m=1

Q2(Fm(z
k+1/2))

• Different Q are taken here. In fact it can be the same operator in
terms of physics, but with different or the same randomness.
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Ideas

• Good idea: variance reduction.
• Non-distributed problem:

min
z∈Rd

1
n

n∑
i=1

fi (z)

And the next method:

zk+1 = zk − γ · (∇fik (z
k)−∇fik (w

k) +∇f (wk))

wk+1 =

{
wk with prob. τ
zk with prob 1 − τ
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MASHA1
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Convergence MASHA1

• Convergence of MASHA1 in transmitted information:

O([1 +
√

1
M + 1

β · L
µ ] log

1
ε );

• Extragradient without quantization:

O( Lµ log 1
ε );

• Quantization gives boost.
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Compression the same?

• Consider the following distributed problem with M = 3, d = 3 and
local functions:

f1(w) = ⟨a,w⟩2 + 1
4∥w∥2, f2(w) = ⟨b,w⟩2 + 1

4∥w∥2, f3(w) = ⟨c ,w⟩2 + 1
4∥w∥2,

where a = (−3, 2, 2), b = (2,−3, 2) и c = (2, 2,−3).

• Question: where is her optimum? (0, 0, 0).
• Let the starting point w0 = (t, t, t) for some t > 0. Then the local

gradients are:

∇f1(w0) =
t
2(−11, 9, 9), ∇f2(w0) =

t
2(9,−11, 9), ∇f3(w0) =

t
2(9, 9,−11).

• Question: what will the QGD (gradient descent with compressions)
step look like if we use Top1 compression?

w1 = (t, t, t) + γ · 11
6
(t, t, t) =

(
1 +

11γ
6

)
w0.

• We move away from the solution geometrically for any γ > 0.
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Error compensation

• Let’s try to remember what we didn’t pass on in the communication
process:

e1,m = 0 + γFm(z0)− C (0 + γFm(z0)).

• And add this to future parcels:

C (e1,m + γFm(z1))

• In an arbitrary iteration, it is written as follows:

Parcel:C (ek,m + γFm(wk)),

ek+1,m = ek,m + γFm(zk)− C (ek,m + γFm(zk))

• This technique is called error compensation (error feedback).
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MASHA2 для компрессий
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Convergence MASHA2

• Convergence of MASHA2 in transmitted information:

O([1 + L
µ ] log

1
ε );

• Convergence of MASHA1 in transmitted information:

O([1 +
√

1
M + 1

β · L
µ ] log

1
ε );

• Extragradient without quantization:

O( Lµ log 1
ε );

• Compression does not give boost in theory.

Aleksandr Beznosikov On Distributed Variational Inequalities 17 January 2024 42 / 47



Convergence MASHA2

• Convergence of MASHA2 in transmitted information:

O([1 + L
µ ] log

1
ε );

• Convergence of MASHA1 in transmitted information:

O([1 +
√

1
M + 1

β · L
µ ] log

1
ε );

• Extragradient without quantization:

O( Lµ log 1
ε );

• Compression does not give boost in theory.
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Similarity

• The operators {Fm} is δ-related in mean. It means that for any j
operators {Fm − Fj} is δ-Lipschitz continuous in mean, i.e. for all u, v
we have

1
M

M∑
m=1

∥Fm(u)− Fj(u)− Fm(v) + Fj(v)∥2 ≤ δ2∥u − v∥2.

• Comes from hessian (second derivatives similarity):

∥∇2fm(z)−∇2fj(z)∥ ≤ δ

• Natural assumption since from Hoeffding: δ = Õ(L/
√
b) or even

δ = Õ(L/b), where b is the number of local data points on each of
the devices.
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Method for data similarity

• Mirror descent for minimization problems:

zk+1 = arg min
w∈Rd

(
γ⟨∇f (zk),w⟩+ V (w , zk)

)
,

where V (x , y) is the Bregman divergence generated by the function
φ(x) (here we need to require that f1 is convex):

φ(x) = f1(x) +
δ

2
∥x∥2.

The function f1 is stored on the server.

• What is the number of communications that occur in K iterations of
such a mirror descent? K of communications (the number of gradient
counts ∇f ), computing argmin requires only computations on the
server.

Aleksandr Beznosikov On Distributed Variational Inequalities 17 January 2024 45 / 47



Method for data similarity

• Mirror descent for minimization problems:

zk+1 = arg min
w∈Rd

(
γ⟨∇f (zk),w⟩+ V (w , zk)

)
,

where V (x , y) is the Bregman divergence generated by the function
φ(x) (here we need to require that f1 is convex):

φ(x) = f1(x) +
δ

2
∥x∥2.

The function f1 is stored on the server.
• What is the number of communications that occur in K iterations of

such a mirror descent? K of communications (the number of gradient
counts ∇f ), computing argmin requires only computations on the
server.

Aleksandr Beznosikov On Distributed Variational Inequalities 17 January 2024 45 / 47



Convergence for data similarity: theorem

Theorem (convergence for data similarity)
Let f be strongly convex, fi be convex, and ℓ be smooth, and
φ(w) = f1(w) + δ∥w∥|2, then mirror descent with step γ = 1 converges
and is satisfied:

V (w∗,wK ) ≤
(

1 − µ

µ+ 2δ

)K

V (w∗,w0).

• It means that if we need to achieve an accuracy ε (V (w∗,wK ) ∼ ε),
then we need to

K =

([
1 +

δ

µ

]
log

V (w∗,w0)

ε

)
communications.
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Similarity + compression

• Double kill of two ideas
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