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Abstract

This work focuses on the distributed optimization of stochastic saddle point problems. The first
part of the paper is devoted to lower bounds for the cenralized and decentralized distributed
methods for smooth (strongly) convex-(strongly) concave saddle-point problems as well as
the near-optimal algorithms by which these bounds are achieved. Next, we present a new
federated algorithm for cenralized distributed saddle point problems — Extra Step Local SGD.
Theoretical analysis of the new method is carried out for strongly convex-strongly concave
and non-convex-non-concave problems. In the experimental part of the paper, we show the

effectiveness of our method in practice. In particular, we train GANs in a distributed manner.
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1. Introduction

Distributed algorithms have already become an integral part of solving many applied
tasks, including machine learning problems [1-3|. This paper also deals with distributed
methods, we study the saddle point problem (SPP):

M
mipmas f(2,9) = 12 D fuley) (1)
m=1

zeX yeYy

where parts of the function f are distributed between M nodes, while the function f,, is
known only to the node with the corresponding number m. SPPs or Min-Max problems,
including distributed ones, have many applications. Here we can note the already classical
and long-established applications in equilibrium theory, games and economics [4], as well as
new and young trends in image deconvolution [5, 6], reinforcement and statistical learning
|7, 8], adversarial training [9] and GANs [10]. In particular, a series of papers [11-16]
showed the connection of the theory for convex SPPs with the training of GANs and
obtained insights and useful tips for the GANs community. From the point of view of
machine learning, it can be interesting when f,, is an empirical loss function of the model
on the local data of the mth device. Therefore, we consider the statement of the problem
(1) when we have access only to local stochastic oracle of f,,(x,vy) = Ee¢, ., fm(2,9,&m),
where the data &, follows unknown distributions D,,.

However, the main problem of the distributed learning tasks is not the stochasticity,
but precisely the separation of the data from the devices. All f,, have access only to
their own data, while transferring data to other devices may be inefficient and, moreover,
impossible for privacy reasons. Therefore, to solve (1), it becomes necessary to construct
a distributed algorithm that combine local computations on each of the devices and
communication between them. Such an Algorithm can be organized as follows: all devices
communicate only with the main device (server). This approach is called centralized.
The main problem is the importance of the server — it can crash and interrupt the whole
process. Therefore, along with the centralized approach, the decentralized [17] one is also
popular. In this case, all devices are equal and connected to a network, communication
occurs along the edges of this network.

Both centralised and decentralised methods are well developed for minimization
problems. But meanwhile, the direction of distributed algorithms for SPPs is much weaker.

Our work makes the following contribution to this area:



1.1. Summary of results

e Lower bounds We present lower bounds for distributed stochastic smooth strong-
ly-convex-strongly-concave and convex-concave SPPs. Both centralized and decentralized
cases are considered.

e Optimal algorithms Next, we obtain the near-optimal algorithms. They are
near-optimal from a theoretical point of view, because their upper bounds reach lower
bounds (up to numerical constants and logarithmic factors). For the centralized problem,
we construct our method based on Extra Step method [18, 19] (classical and optimal
method for non-distributed SPPs) with the right size of batches. In decentralized case,
we also use Extra Step method as base, but communication takes place with the help of
accelerated (gossip) consensus procedure [20].

To sum up and compare the lower and upper bounds see Table 1.

e Local method We also present an extra-step modification of Local SGD |21, 22],
one of the most popular methods in Federated Learning [23, 24|. More recently, other
versions of the Local SGD methods for SPPs have appeared [25, 26]. All of the methods
presented in these papers are based on gradient descent-ascent, but it is known that such
methods, even in the non-distributed case, diverge for the most common SPPs [11, 27|.
Our method is based on the classic method for smooth SPPs — Extra Step algorithm,
which makes it stand out from the competitors.

e Non-convex-non-concave analysis We analyze our new algorithms: near-opti-
mal and local, not only in convex-concave case, but even in the non-convex-non-concave
case under minty assumption [28, 29]. Minty is the weakest additional assumption for a
non-convex-non-concave problem found in the literature. But even with the these minty
assumption, there are not many analyses of distributed methods [30, 31|. In particular,
our analysis covers the estimates of the decentralized but deterministic method from [30],
and also generalizes and overlaps the estimates for the stochastic method for homogeneous
data (f,, = f) from [31].

e Experiments The first part of our experiments on classical bilinear problem is
devoted to the comparison of the optimal centralized method and the method based on
Local SGD, as well as comparison of our local method with competitors |25, 26]. The
second part is devoted to the use of Local SGD and Local Adam techniques for training

GANSs in a homogeneous and heterogeneous cases.
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Table 1: Lower and upper bounds for distributed smooth stochastic strongly-convex—strong-
ly-concave (sc) or convex-concave (c) saddle point problems in centralized and decentralized
cases. Notation: L — smoothness constant of f, u — constant of strong convexity-strong
concavity, Ry = ||z0 — z*||2, 2, — diameter of optimization set, A, y — diameter and
condition number of communication graph (condition number of gossip matrix), K —
number of communication rounds, 7" — number of local calls of gradient oracle on each
node. In the convex-concave case, the bounds are in terms of the gap function, in the

strongly convex-strongly concave case — in terms of the (squared) distance to the solution.

1.2. Related works

SPPs. First, we highlight two main non-distributed algorithms for SPPs. First
algorithm — Mirror Descent [32], it is customary to use in the non-smooth case. For smooth
problems, Extra Step/Mirror Prox is applied [18, 19, 33|. Also, the following methods
[34-36] can be noted as popular for smooth SPPs.

Lower bounds. In the non-distributed case, the lower bounds for smooth strongly
convex-strongly concave case SPPs are given in [37], for convex-concave — in [38]. In
smooth stochastic convex optimization, we highlight works about lower bounds [39, 40|.
It is also important to note the works devoted to the lower bounds for centralized and
decentralized distributed convex optimization [41, 42].

Distributed SPPs. The following works are devoted to decentralized Min-Max: in



the deterministic case |30, 43, 44], in the stochastic case [31]. Let us also highlight the
local methods for SPPs [25, 26] already noted earlier in Section 1.1.

2. Settings and assumptions

We consider problem (1), where the sets X C R"* and ) C R™ are convex sets. For

simplicity, we introduce the set Z =X x Y, z = (z,y) and the operators F,,,:

Vi fm(2,y)
Fo.(2) := F(x,y) = ) (2)

_vyfm(ﬂi, y)

As mentioned above, we do not have access to the oracles for F,,,(z), at each iteration our
oracles gives only some stochastic realization F,(z,£). Next, we introduce the following

assumptions:
Assumption 1(g). f(x,y) is L - smooth, i.e. for all z;,20 € Z
[1F(z1) = F(z)| < Lllz1 — 2| (3)
Assumption 1(1). For all m, f,,(x,y) is Lyax-smooth, i.e. for all z;, 2z, € Z
[Fm(z1) = Fon(22)[| < Linaxl21 = 22]|- (4)

Assumption 2(sc). f(z,y) is strongly-convez-strongly-concave with constant p, if for all

21,22 € Z
(F(z1) — F(z2), 21 — 22) > pl|z1 — 22| (5)

Assumption 2(c). f(z,y) is convex-concave, if f(x,y) is strongly-convex-strongly-con-

cave with p = 0.

Assumption 2(nc). f satisfies the minty assumption, if exists z* € Z such that for all

ze€Z
(F(2),2 - %) > 0. (6)

Assumption 3. F,,(z,€) is unbiased and has bounded variance, i.e. for all z € Z it holds

that

E[Fn(2,8)] = Fu(2),  ElllFn(2,§) — Fu(2)|I"] < 0. (7)



Assumption 4. Z is compact bounded, i.e. for all z,2' € Z
Iz = 2| < Q.. (8)

Hereinafter, we use the standard Euclidean norm ||-||. We also introduce the following
notation projz(z) = minyez ||u — z|| — the Euclidean projection onto Z.

We also assume that all devices are connected to each other in a network, which can be
represented as an undirected graph G(V, £) with diameter A. As mentioned earlier, we are
interested in several cases of distributed optimization: centralized, and decentralized. It is
important to mention one of the most popular communication procedures in decentralised
setup — the gossip protocol [45-47]. This approach uses a certain matrix W. Local vectors
during communications are "weighted" by multiplication by W. The convergence of
decentralized algorithms is determined by the properties of this matrix. Therefore, we

introduce its definition:

Definition 1. We call a M x M matric W a gossip matrix if it satisfies the following
conditions: 1) W is symmetric positive semi-definite, 2) the kernel of W is the set of
constant vectors: ker(W) = span(1), 3) W is defined on the edges of the network: W;; # 0

only if i =7 or (i,j) € £.

Let Miy(W) > ... > Ay (W) = 0 the spectrum of W, and condition number x =

xX(W) = A;Il_(lw(/v)v) Note that in practical algorithms [20, 41, 46, 48] is used not the matrix

W, but W =1— % To describe the convergence, we introduce Ao(W) = 1— /\AA[;(%/V)V) =

1 _q_1
1= x(W) 1—+
The next definition is necessary to describe a certain class of distributed algorithms,

for which we will obtain lower bounds. We use a definition quite similar to [41, 42].

Definition 2. Let introduce some procedure with two parameters T" and K, which we call
Black-Box Procedure(7, K). Each agent m has its own local memories MZ, and MY,
for the x- and y-variables, respectively—with initialization M=, = MY = {0}. MZ and
M.Z

¥ are updated as follows.

e Local computation: At each local iteration device m can sample uniformly and

independently random variable &, and adds to its M? and MY, a finite number of points



x,y, satisfying

z € span{a’, Vo [ (2", 4", 6m)}, € spandy’, Vy fn(@" 4", 6m) }, (9)

for given o', 2" € MZ and y',y" € MY,.
e Communication: Based upon communication rounds among neighbouring nodes,
M

¢ and MY, are updated according to

M = span U M? o, MY = span U M (10)

(i;m)e€ (i,m)€€
e Output: The final global output is calculated as:
M M
iespan{UM%}, ?)Espan{UME’n}.
m=1 m=1
We assume that each node makes no more than T local iterations (for simplicity, that

exactly T') during the operation of the algorithm. The number of communication rounds is

also limited to a certain number of K <T.

3. Lower bounds

Following the classical results on obtaining lower bounds, it is sufficient to give an
example of a «bad» function [49], and the «bad» partitioning of this function between nodes
[41]. First, let us divide the original problem into two independent ones: deterministic and
stochastic. Consider f,,(z,y) = fieter(zdeter y) + fstoch(gstoch)  where the vectors zdeter
and 2" together give the vector z. At the same time we have access to F,,(x,y,§) =
Fdeter (gdeter o)) 4 7 fstoch(gstoch ) Tt means that for f9°°" we have a deterministic oracle

and stochastic — for fst<*. Such f,, helps to rewrite the original problem (1) as follows:

M
: 1 deter (, .deter : stoch (. .stoch
Lenin | max Zl focter (xeter y) + mmin fetoch (zotohy, (11)
m=

Therefore, we separately prove the estimates for each of the problems, and then combine.

3.1. Deterministic lower bounds

In this part, we provide lower bounds for the centralized (Theorem 1) and decentralized

(Theorem 2) cases.
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Theorem 1. For any L > p > 0 and any connected graph with diameter A, there exists
a distributed saddle point problem (satisfying Assumptions 8 and 5) on X x Y = R" x R"
(where n is sufficient large) with x*,y* # 0, such that for any output &,y of any procedure
(Definition 2), the following estimates hold:

A * (12 ~ * (12 * (|2
_ — =0 ___r . _ .
||517 Zz H ||y Y || (exp< 7 2) ||yO Yy H >

Theorem 2. For any L > > 0 and any x > 1, there exists a decentralized distributed
saddle point problem (satisfying Assumptions 8 and 5) on X x Y =R" x R" (where n is
sufficient large) with z*,y* # 0 over a fized network (Definition 1) with a gossip matrix
W and characteristic number x, such that for any output T,y of any procedure (Definition
2), the following estimates hold:
o=t =P = 2 (e (72 ) I =)
Regularization and convex-concave case. Note that in the convex-concave
case the problem is usually considered on a bounded set (Assumption 4), moreover, the
convergence criterion for algorithms is a gap function:
gap(z,y) = max f(z,y’) — min f(z',y)- (12)

Therefore the lower bounds are also needed in terms of (12). Following the inequality 6 of

[37], we can rewrite the estimates from Theorems 1 and 2 as follows
H * H x
gap(w,y) 2 Tlle — 2" lI* + Sy —y7*

Next, to obtain bounds for the convex-concave case from bounds for the strongly con-

vex-strongly concave case, we use a regularization trick:

fres(,) = $:0) + gl = ol = g 1y = woll
where €2, is an Euclidean diameter of the set X x ). It turns out that if f(z,y) is a
convex-concave function, then fieq.(x,y) is ﬁ is strongly convex-strongly concave. The
new problem is solved with an accuracy of /2, then we find a solution to the original

problem with an accuracy of ¢.
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3.2. Stochastic lower bounds

Due to our choice of f,, from (11), one can note that in order to obtain lower stochastic
bounds, we need to consider the minimization problem rather than the SPP, moreover,
the non-distributed minimization problem. Therefore, these bounds depend on the total
number of local calls of the oracle, and this number is equal to MT. Let us formulate two

theorems for the convex and strongly convex cases of f5toh,

Theorem 3. Forany L > p > 0 and any M, T € N, there exists a stochastic minimization
problem with L-smooth and p-strongly convex function such that for any output T of any

BBP(T', K) (Definition 2) with M workers one can obtain the following estimate:

2
A * (|2 o
=" =0 —= .
o -2 = (57—
Theorem 4. For any L > 0 and any M,T € N, there exists a stochastic minimization

problem with L-smooth and convex function such that for any output & of any BBP(T, K)

(Definition 2) with M workers one can obtain the following estimate:

B - f] =9 (=)

3.3. Connection of lower bounds

The connecting of deterministic and stochastic bounds follows from (11). The results
for the centralized and decentralized cases are shown in Table 1. See Appendix 9 for
complete proof of this part. To verify the tightness of our lower bounds, the next section

designs algorithms that reach such bounds.

4. Optimal algorithms

This section focuses on theoretically near-optimal algorithms. It is easy to check that

our algorithms satisfy the BBP definition.

4.1. Centralized case

We design our algorithm based on MiniBatch SGD and Extra Step. For this algorithm

we introduce r as a maximum distance from nodes to server.
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Algorithm 1 Centralized Extra Step Method

communication rounds K, number of local steps T'.

Parameters: Stepsize 7 < 4L,

Initialization: Choose (2°,y") =2° € Z, k = | £ | and batch size b= | |.
fort=0,1,2,....,k—1 do
Generate batch & on each machine independently

b
Each machine m computes gf, = 1 > F,, (2%, &%) and sends g, to server
=1

t

M
H1/2 = projz(2' — 2 3" ¢',) and then sends 2'*!/? to machines
o

Server computes z

Generate batch {Hl/ ? on each machine independently

b ‘
Each machine m computes g5/ = LN E (2112, fﬁ,fl/z’z) and sends g5 /2 to server

t+1

to machines

g %) and then sends z

gm
1

1]
Mz

Server computes 2T = projz (2 — Vi

end for

Theorem 5. Let {z'};>¢ denote the iterates of Algorithm 1 for solving problem (1). Let

Assumptions 1(g), 3 be satisfied. Then, if v < we have the following estimates in

4L’

e [i-strongly convex-strongly concave case (Assumption 2(sc)):

k *12] _ A 0 |2 pK o’
Bl - #7171 = 0 (10 - =" PPesp (2 ) + =),

e conver—concave case (Assumptions 2(c) and 4):
LO2A of)
E[gap(zgu,)] = O | —— + ——= | .

e non-convex-non-concave case (Assumptions 2(nc) and 4):

L2Q2A 2K
Co(LEa, o),

k—

A S

t=0

K MTA

t+1/2
where 2, = ¢ Z z

4.2. Decentralized case

The idea of Algorithm 2 combines three things: Extra Step, accelerated consensus -

FastMix (see Algorithm 4 in Appendix 10 or |20, 48]) and the right size of batches.

Theorem 6. Let {z! };>¢ denote the iterates of Algorithm 2 for solving problem (1). Let
Assumptions 1(g), 1(1), 3 be satisfied. Then, if v < 4 and P = O (ﬂlog é), we have

the following estimates in
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Algorithm 2 Decentralized Extra Step Method

Parameters: Stepsize v < 3 L; communication rounds K, number of local calls T,
number of FastMix steps P.

Initialization: Choose (2°,y") =2° € Z, 20 = 2°, k = | K| and batch size b = [ L |.
fort=0,1,2,...,k—1 do

Generate batch & on each machine independently

Each machine m compute 2 /% = 2= g Z F (2t €bi)
Communication: z1+ /2, ce ~E1/2 =FastMix( AtH/Q, e ,25\}1/2, P)
Each machine m compute z, /2 _ = projz( gfgrlﬂ)

Generate batch &5 /2 on each machine independently

Each machine m compute 251 = 2f —~ - 1 Z Fo (24 t+1/2 Z;rl/li)
=1

Communication: 2™ ... Z451 —FastMix(2 t+1, L o)

Each machine m compute zt“ = projz(ztH)

end for

e [i-strongly convex-strongly concave case (Assumption 2(sc)):

k21— A 11,0 _ 2 pK o’
Bl = 1 = 0 (1" = =P exp (~go= ) + i )

e convex-concave case (Assumptions 2(c) and 4):

~ (L2 /X Q.
Elgap(eh)] =0 (“ 15+ ).

e non-convez-non-concave case (Assumptions 2(nc) and 4):

1 LZQZ O'2K
B | S IFEIR| =0 (4 7 ).
t=0 VX
where ' = - % o and ZkE = € kil f‘: t+1/2
m=1 t=0 m=1

Discussions Let us make some comments on our Algorithms:

e It is easy to see that our Algorithms are near-optimal — see Table 1 for details.
However, there are several practical drawbacks of these Algorithms. The first is related to
the fact that in Algorithm 2 we need to take multi consensus steps at each iteration. This
approach does not always pay off in practice. On the other hand, the optimal decentralized
algorithms for minimization problems also use FastMix — see literature review in [50].

Secondly, if T > K, at each iteration we collect a very large batch, in practice such
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batches do not make sense. Therefore, an idea arises to use these local computations of
gradients more efficiently, for example, doing local steps. This brings us to Section 5.

e [t can be noted that in the non-convex-non-concave case, we do not guarantee the
convergence, when 7" ~ K. But the method converge sublinearly if ¢ = 0. In this case, we
cover the deterministic results from [30]. In the stochastic case (o0 > 0), convergence is
also not guaranteed in [31, 51]. Therefore, we cover and even overlap their analysis, since

they consider only the homogeneous case (f,, = f).

5. Local algorithm

In this section, we work on sets X = R"™ and ) = R™. Additionally, we introduce

the following assumption:

Assumption 5. The values of the local operator are considered sufficiently close to the

value of the mean operator, i.e. for all z € Z

[Fm(2) = F(2)[| < D. (13)

This assumption is often called D - heterogeneity.
Our algorithm is a combination of Local SGD and Extra Step. One can note that
such an algorithm is BBP(7, K).

Theorem 7. Let {z! };>¢ denote the iterates of Algorithm 8 for solving problem (1). Let
Assumptions 1(1), 3 and 5 be satisfied. Also let H = max,, |ky11—kp| is a mazimum distance
between moments of communication (k, € I). Then we have the following estimates in

e [i-strongly convex-strongly concave case (Assumption 2(sc)) with v < m

=T *|[2] _ A 0 2 pT o’ L12naxH 2 2
B - 1= 0 (10~ 1o (i — ) + o Ll (1)),

e non-conver—non-concave case (Assumption 2(nc) and with assumption that for all t,

— - 1 .
12 < Q) with v < 77—

-1 2/3 9
1 L2, 02 [HLaQ (HD? + 02
HF<?)H2] =O< mlly Hlne (00 £ 0) +°’M+LmaXWH<HD2+a2>),

t=0



15

Algorithm 3 Extra Step Local SGD

Parameters: stepsize v <

ﬁ; number of local steps T', sets I of communications
max

steps (|| = K).
Initialization: Choose (z°,¢y°) = 2° € Z, for all m, 29,

fort=0,1,2,...,7T—1 do

= 2% and 2 = 2°.

Generate random variable &' on each machine independently

Each machine m computes zhi /% = 2t — yF, (2t € )

t+1/2

Generate random variable &, '~ on each machine independently

Each machine m computes 25 =2t —~F, (2 anl f;{l/z)
ifteldo

Each machine sends z/H on server

Server computes Z = = Z 2iH1 - sends 2 to machines

Each machine gets 2 and sets 2l =2
end for

Output: 2.

Discussions

e Compared to Algorithm 1, Algorithm 3 gives worse convergence guarantees. Why
then Algorithm 3 is needed? For practical purposes. Local SGD or FedAvg is a fairly
well-known and popular federated learning concept. We extend this concept to min-max
problems, including non-convex-non-concave ones. In particular, the theory states that
for Algorithm 1 step v ~ T and for Algorithm 1 v ~ —m but in practice one can
use the same steps (learning rates) for both Algorithms. It seems natural that Algorithm
3 can outperform Algorithm 1 in some regimes, simply because it takes more steps (see
Section 6).

e As noted in Section 1.1, there are two more methods of the Local SGD type for
SPPs [25, 26]. But these methods use Descent-Ascent instead of Extra Step as a base.
Also, the stepsize of these methods is confusing, even in the strongly convex-strongly

concave case, it is proposed to take v = which in practice is a very small number

K
HLIQI]aX ’

and provide a very slow convergence of the methods.
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6. Experiments

6.1. Bilinear problem

Let us start with an experiment on the bilinear problem:

M
1 T
i — Ay + 0z + Ly, 14
minmase 7 3 (27 A+ U+ ) (14

where n = 100, M = 100, matrices A,, > 0 are randomly generated with \., = 1000
(then L = 1000). Coordinates b,,, ¢, are generated uniformly on [—1000; 1000]. Moreover,
we add noise with o2 = 10000 to the gradients. Starting point is zero.

The purpose of the first experiment is to compare our local method (Algorithm 3)
with the local approaches from papers |25, 26]. For all methods H = 3, and the step is
chosen for best convergence. See Figure 1 (a) for the results. Note that our Algorithm 3
outperforms the competitors. Moreover, methods from papers [25, 26] do not converge
at all with any steps 7. As noted above (Section 1.1), this is due to the fact that these
methods are based on Descent-Ascent.

The next experiment is aimed at comparing Algorithm 3 with different communication

frequencies H. We take v = From the point of view of communications (Figure 1

5L

Bilinear: local methods Bilinear: different frequencies Bilinear: MiniBatch VS Local

o 10° 4 <+ Every |- H=10 o p A Ly=g @ MBy=g
—#- Local GDA N H e H=15 N P
—A— SCAFFOLD | —h —#- H=25 R I

< < )

L oA

10 ~ 1072 “:_\

*N ‘N

| |

= =

N N

A Ly=g; 4@ MBy=gp
0 500 1000 1500 2000 2500 3000 100 200 300 4060 500 0 1000 2000 3000 4000 5000
Communications, K Communications, K Communications, K

(a) (b) ()

Figure 1: (a) Comparison of Algorithm 3 and |25, 26] with H = 3 and tuned steps;

(b) Comparison of Algorithm 3 with different communication frequencies H, as well as
Algorithm 1 with batch size 1 (blue line — "Every") for (14); (¢) Comparison of Algorithm
3 (L) with communication frequencies H = 3 and Algorithm 1 (MB) with batch size 6 for
(14)

(b)), we get a standard result for local methods: less often communications, the faster
convergence (in communications), but worse solution accuracy. This is due to fluctuations

during local iterations, which lead away from the solution of the global solution.
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In the third experiment, we want to vary the step and compare Algorithm 3 with a
frequency of 3 and Algorithm 1 with batch 6 (such parameters give that there are 6 local
calls for one communication for both Algorithms). This problem statement is interesting
because Algorithm 1 is optimal, but Algorithm 3 is not, but it can be better in practice.

We see (Figure 1 (c)) that the local method wins in rate, but loses in extreme accuracy.

6.2. Federated GANs

Model, data, optimizer A very popular enhancement of GANs is Conditional
GAN, originally proposed in [52|. It allows to direct the generation process by introducing
class labels. We use a more complex Deep Convolutional GAN [53] with adjustments
allowing to condition the output by class labels. We consider the CIFAR-10 [54] and split
the dataset into 4 parts. For each part, we select 2 majors class that forms 30% of the
data, while the rest of the data split is filled uniformly by the other classes. As optimizers
we use Algorithm 3 and Local Adam [55] - a variation of Algorithm 3, but where the local
gradient steps are replaced with Adam updates.

Setting Here we would like to consider the experiment of Federated Learning.
Communication is a strong bottleneck of federated setting, since data is the local data of
users on their devices, and they may simply not be online for transmitting information.
Therefore, the reducing communications is our goal, this is what local methods are needed
for. Then we want to compare how our optimizers work with a different number of local
steps. In particular, we try to communicate once in an epoch, once in 5 epochs and once
in 10 epochs. It is interesting to check how the frequency of communication will affect the
quality of training.

Results Based on the results of experiments on bilinear problems (Section 6.1), it
was expected that methods which connect to the server less frequently (but do the same
number of local epochs) would outperform their competitors in terms of communication
budget. This trend is observed in Figures 2 and 3 — methods making fewer communications
do not lose in terms of FID and IS. Meanwhile the strongly increasing distance between the
communications can affect the quality of training considerably, especially in the last epochs.
Therefore, we recommend using local methods with long gap between communications only

in the initial stages of training, then it is worth communicating more and more frequently.
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Figure 2: Comparison of three distance between communications in Local Adam in DCGAN
distributed decentralized learning on CIFAR-10. We compare the FID Score and the
Inception Score in terms of the local epochs number. The experiment was repeated 3 times
on different data random splitting - the maximum and minimum deviations are on the

plots.
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Figure 3: Pictures generated by DSGAN trained distributed on different distance between

communications: (a) 1, (b) 5, (¢) 10 epochs.

7. Conclusion and future work

The paper derives lower bounds for deterministic and stochastic saddle point problems
in distributed centralized and decentralized (fixed networks) setups. An interesting issue
is the lower estimates for decentralized problems on time-varying networks.

We also give near-optimal algorithms that achieve lower bounds up to logarithmic
factors. For future research, the question of obtaining optimal algorithms without additional
logarithmic factors is important.

We present a centralized method with local steps, which is not optimal in theory but
is more robust in practice. It is an interesting task to create a decentralized method with

local steps.
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8. General facts and technical lemmas

Lemma 1. For arbitrary integer n > 1 and arbitrary set of positive numbers a, ..., ay,

we have )
(Z ai> < mZa?. (15)
i=1 i=1

Lemma 2. Suppose given a convex closed set Z, then the operator of the Fuclidean

projection onto this set is non-expansive, i.e. for all z,z' € Z,

Iprojz(2) — projz ()| < [lz = #'||. (16)

9. Proof of Theorems from Section 3

As mentioned in the main part of the paper we consider the following model of

functions:

fm (I‘7 y) — f;)ileter (xdeter’ y) + fstoch (xstoch). (17)

Note that the function fé°" uses the vector z9¢°" and the function f5°" uses another

vector x*“". The variables in the vectors z%*" and x*°“* do not i ntersect, but to-
gether z%%" and 2" form a complete vector z, for example, according to the following
rule: Top_1 = 289" and zop = 2" for k = 1,2.... At the same time, for fi we

have access to V, f2¢r (z,y), V, féter (z@er y) and for f*'°" to stochastic realizations
V. fotoch(gstoch €Y that satisfy Assumption 3. Moreover, 2" are different for each device,
but f*°°" is the same.

We take "bad" functions with even n,stoch = ngdeter = 1, = n. Moreover, n must be

taken large enough, as stated in the Theorems.

9.1. Deterministic lower bounds

We begin with deterministic lower bounds. Our example builds on a splitting of
the "bad" function for the non-distributed case from [37]. Next, we give an example of
functions fdeter(gdeter 4) and their location on the nodes. For simplicity of notation, in
this subsection we use f,,(x,y) instead of fdeter(gpdeter ).

We introduce some auxiliary arrangement of functions on the nodes, prove some facts

for it, and then present the final "bad" examples and prove the lower bounds.
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Let B C V — subset of nodes of G. For d € N we define By = {v €V : d(B,v) > d},
where d(B,v) — distance between set B and node v. Then we construct the following

arrangement of bilinearly functions on nodes:

(

fulz,y) = sl - 52" Ay + Sll2l® = Slyl” + sy - Soely, me By

2B " 2 361 2n
Ful@,y) = 9 fola,y) = ot - 52T Aoy + §ll2(|* = §llyll?, meB (18
\f3(1‘ay) = §||x||2 - %||?J”27 otherwise

where e; = (1,0...,0) and

10 1 =2
1 -2 1 0
1 0 1 -2
1 -2 1 0
Al = , A=
1 =2 1 0
1 0 1 -2
1 1
In most cases, we want the simplest case with |B| = |By| = 1.

Lemma 3. Let Problem (18) be solved by any method that satisfies Definition 2. Then

after K communication rounds, only the first \_%J coordinates of the global output can be

non-zero while the rest of the n — L%J coordinates are strictly equal to zero.

Proof: We begin introducing some notation for our proof. Let
Ey:= {0}, FEg :=span{ey,...,ex}.

Note that, the initialization from Definition (2) gives M* = E,, MY = FEj.
Suppose that, for some m, M7 = Ex and MY = Ej, at some given time. Let us

analyze how M? MY can change by performing only local computations.
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Firstly, we consider the case when K odd. After one local update, we have the
following:

e For machines m which own f;, it holds

x €spanie; , ', Ay} = FEk,
{ } (19)

y € span{el VAN A?:p’} = By,
for given 2/, 2" € M? and ¢/, y” € MY, . Since A; has a block diagonal structure, after one
local computation, we have M? = Ex and MY = Ef. The situation does not change,

no matter how many local computations one does.

e For machines m which own f5, it holds

x € span{z’ , AQy’} = Fr.1,

y € span{y' , Aga:'} = Fr.1,
for given 2/ € MZ and y' € MY . It means that, after local computations (at least one
local computation), one has M?* = Ex .1 and MY = FEy.,y. Therefore, machines with
function f5 can progress by one new non-zero coordinate.

This means that we constantly have to transfer progress from the group of machines
with f; to the group of machines with f; and back. Initially, all devices have zero
coordinates. Further, after at least one local computation, machines with f; can receive
the first nonzero coordinate (but only the first, the second is not), and the rest of the
devices are left with all zeros. Next, we pass the first non-zero coordinate to machines
with fy. To do this, d communication rounds are needed. By doing so, they can make
the second coordinate non-zero, and then transfer this progress to the machines with f;.
Then the process continues in the same way. It remains to note that for this update in the
number of non-zero coordinates, we need at least one local calculation for each non-zero
coordinate. Note that the local computation budget is sufficient (I" > K — see Definition

2). This completes the proof.

Consider the problem with the global objective function:

f(x,y) = % Z fm(x7y) - % (|Bd| ’ fl(x7y) + ’B| ’ fQ(xay) + (M - |Bd| - |B|) : fg(l‘,y»

2

I L . 1
_ §xTAy . g”IH? _ g||y||2 + @elTy, with A= 5(141 + As) (20)
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With the fact that |A|| < 2, one can easy verify that (20) satisfies Assumptions 1(g)
and 2(sc).

The previous lemma gives an idea of what the solution obtained using procedures
that satisfy Definition 2. The next lemma is already to the approximate solution of the

problem (20) and how it is closed to the real solution.

Lemma 4 (Lemma 3.3 from [37]) Let a = %%2 and ¢ = 3 (2+ o —Va?+4a) € (0;1) -
the smallest oot of ¢* — (2 + a)q+ 1 =0, and let introduce approzimation y*

(21)

Then error between approximation and real solution of (20) can be bounded

n+1
—% * q
vyl —.
e B

Proof: Let us write the dual function for (20):

1 4 (L? L?
= —— —ATA+ I —ely.
9(y) = =5y (4u +u>y+4uely
where one can easy found

1 -1

-1 2 -1

-1 2 -1
-1 2 -1
AAT =
-1 2 -1

The optimality of the dual problem Vg(y*) = 0 gives

L? L?
(4—ATA + u[) Y= —ey,
It 4p
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or
(ATA + aI) y" = e;.

Let us write in the form of a set of equations:

(

(1+a)yf —ys =1

i+ 2+a)ys —y3 =0

—Yp—ot (2 + O‘)?szl -y, =0

| vt 24y =0

Note that the approximation (21) satisfies the following set of equations:

/

(1+a)yi —55 =1

—Ji+Q2+a)y—75=0

~U o+ 2+ )y — Uy =0

or in the short form:

(ATA+al) g = ey + &

o

Then the difference between the approximation and the true solution is

yr—yt=(ATA+ oz])f1 i
1

ena

With the fact that o' = (ATA+ oz[)_l >~ 0, it implies the statement of Lemma.

Now we formulate a key lemma (similar to Lemma 3.4 from [37]).

Lemma 5. Consider a distributed saddle point problem in form (18),(20) with By # &.
For any pairs T, K (T > K ) one can found size of the problem n > max {210gq <ﬁ§> ,ZK},
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%2 and q = % (2 +a—+Va?+ 4a) € (0;1). Then, any output T,y produced
by any BBP(T, K) satisfying Definition 2 after K communications rounds and T local

where o =

computations, is such that

a2
o= 2l 4 g — g 2 g% 10 T
16
Proof: Lemma 3 states that after K (K < T) communications only k = | £ | coordinates

in the output ¢ can be non-zero. Therefore, by definition of §* from (21), by £ < K < %

and with ¢ < 1, we have

g —g*|I> >

> g = I* 1> = -7

For n > 2log, <ﬁ§> we can guarantee that y* ~ y* (for more detailed see [37]| ) and

2k

- o oz 4 . ) llyo =y I1* o e llyo — y*IP
&= I+ 15—y I = 19—y I1> = Tollo—y' P = ?LEV R > % 2R 2L

16 - 16
0

Building on the above preliminary results, we are now ready to prove our complexity

lower bound as stated in Theorems 1 and 2.

Centralized case

Theorem 8 (Theorem 1) For any L > pu > 0, any A and any T, K € N with T > K,
there exists a distributed saddle point problem of A+1 functions with centralized architecture.

For which the following statements are true:

e the diameter of graph G is equal to A,

M
o = % Y fm i R" X R™ = R is L-smooth, . — strongly convez-strongly concave,

m=1

o szzen>max{210gq (4\[> QK}, wherea:%2 andq:%(2+a—\/a2+4a) €
(0;1).

Then for any output T,y of any BBP(T, K) (Definition 2), the following estimates hold:

Ap K
A * 12 Nk 2 — Q — 2
|2 — 2"+ [lg — v P\ A lyo — v*|]
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Proof: It suffices to consider a linear graph on A + 1 vertices {vy,...,va41} and

apply Lemma 5 for problem (18),(20) with B = {v;} and d = A. Then

2K %112
1\ 2 lyo — v*|]
- Z 5, * |2 -~ *[12) "
q 16([|2 — 2*[1* + 17 — v*(1?)

Taking the logarithm of the two parts of the inequality, we get

2K lyo — y*||? 1
—~ = n - (]2 - (|2 —1\"
A 16(/|2 — 2|2+ [|lg — y*[?) ) In(¢™?)

Next, we work with

1 1 q

(D) mi+(-g/g) 1—g

Finally, one can obtain
2K —y*? 1 /L
-——Zm( i H@QyHA *2),_<__1>7
A 16([2 — 2>+ g — 1)) 2 \n

( 4p K) o — v |1
exp| ——— | > A w12 P TEI
L—pA 16(][2 — 2*[]* + |9 — y*[I*)

and

which completes the proof.

Decentralized case

Theorem 9. For any L > > 0, any A and any T, K € N with T > K, there exists a
distributed saddle point problem with decentralized architecture and a gossip matrix W.

For which the following statements are true:
e a gossip matric W have x(W) = x,

M
o = % Y7 fm i R* X R™ = R is L-smooth, u — strongly convez-strongly concave,
m=1
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o szzen>max{210gq (4f> QK}, where o = 4 ﬁ andq—%(2+a—\/a2+4a)

Then for any output &,7 of any BBP(T, K) (Definition 2), the following estimates hold:
o=t =P = 2 (e (72 ) =)
Proof: The proof follow similar steps as in the proof of [41, Theorem 2|. Let
M = LZ% be a decreasing sequence of positive numbers. Since v, = 1 and lim,,, y5; = 0,
there exists M > 2 such that v, > 1 X > M4t
o If M > 3, let us consider linear graph of size M with vertexes vy,...vy, and
weighted with w; 2 = 1 —a and w; ;11 = 1 for i > 2. We apply Lemma 5 for problem

(18),(20) with B = {v;} and d = M — 1, then we have By = {vy/}. Hence,
* |2
o= 2l 4 g = g 2 g% 1 T

If W, is the Laplacian of the weighted graph G, one can note that with a = 0, % = Y,

with @ = 1, we have % = 0. Hence, there exists a € (0;1] such that (W) = X.
Then % > Y1 > GrT and M > /2y > \/T%' Finally, since M > 3, we get
d:M—IZ%Z%. Hence,
]2
i — a2+ g — ) 2 g 1V

Similarly to the proof of the previous theorem

2 K a2
L—py/x) —16([[& = 24> + |9 — v*[I*)

o If M = 2, we construct a fully connected network with 3 nodes with weight w3 =

€ [0;1]. Let W, is the Laplacian. If a = 0, then the network is a linear graph and
p(W,) = 73 = . Hence, there exists a € [0;1] such that x(W,) = x. Finally, B = {v;},
Bg={vs}andd >1> \/TY Whence, it follows that in this case (22) is also valid.

O
9.2. Stochastic lower bounds
Strongly-convex case
We consider the following simple problem with function f: R — R:
min f(z) = 5 (z — m)?, (23)
z€R 2
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where we do not know the constant xy # 0. f(z) is a p-strongly-convex and p-smooth

function. We minimize this function by using stochastic first order oracle

Vi(x,&) =pulr+E&—mx), where £ € N (O,Z—Z) )

One can note that E[V f(x,¢)] = u(zr — x9) = Vf(z), and E[|[Vf(z,&) — Vf(z)]}] =
E [1?[€]?] = 0. We use some BBP(T, K) (Definition 2), which calls the stochastic oracle
N = MT times in some set of points {z;}~,, for these points oracle returns y; =
w(x; — o+ &), where all & € N'(0,0%/p?) and independent. Using x;, y;, one can compute
point z; = x; — y;/p = xo — & € N(xg,0?/u?) and independent. Hence, the original
problem (23) and the working of any BBP are easy to reformulate in the following way:
after N calls of the oracle we have set of pairs {(;, ;) },, where z; € N (2o, 02/u?) and

independent. By these pairs we need to estimate the unknown constant xy,. One can do it

by MLE:

N
1 o?
$%LE = N E Ziy IIZ\V/ILE c N (.I(), N_,ug) .
i=1

Then
2

E [[lan™ —2*|?] = E [Ja§"" — zof*] = Var [23"*] = ]\(fjuz,

or

0.2

2Nu
We need to show that the estimate obtained with the MLE is the best in terms of N, for

E[f(@N"") = f(@")] = SE[laN"" — xo]’] = §Var [2\F] =

this we use the Cramer—Rao bound:

Lemma 6. Suppose xq is an unknown parameter which is to be estimated from {z;}¥,

independent observations of z, each distributed according to some probability density
function f.,(z). Consider an estimator To = Zo(21,...,2y) with bias b(xg) = E[Zg — x0].
Thus, the estimator T satisfies

[1+ V' (20)]?

T
Bl =l = TN

+ b2($0)7

Oxg

2
where I(xg) = E [(M> } — Fisher information.

For normal distribution I(xg) = Jz. Then

2
Ei—x220—1—|—b'x 210 (x
(&0 — o|?] NMQ[ (20)] €
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Suppose that there is such estimate that it is better than the MLE in terms of N. Hence,

[1+0(20))? ~ where a > 0.

1
N2 ’

It means —b'(zo) ~ =t or 2L With enough big N we get that &(zg) ~ —1 in terms
of N. Then b*(zy) ~ x3. We arrive at a contradiction in the existence of an estimate that

asymptotically (in N) better than the MLE. Then we have the following theorem:

Theorem 10 (Theorem 3) For any L > p > 0 and any M, T € N, there exists a stochastic
mainimization problem with L-smooth and p-strongly convex function such that for any

output T of any BBP(T, K') (Definition 2) with M workers one can obtain the following

o= (-2
U\ MT2 )

estimate:

Convex case

For convex case, we work with

-
min —u,
vel-5. %] (o

(24)
where € can only take two values € or —e with some positive €. Of course, we do not know
which of the two values € takes. For example, we can assume that at the very beginning € is
chosen randomly and equally probable. It is easy to verify that (24) is convex and L-smooth
for any L and e. The first order stochastic oracle returns V f(z, &) = £ € N (€/Q,,0?). One
can note that E[V f(x,£)] = £/ = Vf(z), and E[|Vf(z,&) — Vf(2)]?] = 02. We use
some procedure BBP(T, K') (Definition 2), which calls oracle N = MT times in some set of
points {x;}Y . For these points oracle returns &;, where all & € N(£,0?) and independent.
Note that we can say in advance that z* = % if ¢ = —¢ and z* = —% if eé =¢e. We
have a rather simple task, from independent samples {&}Y, € N(£/Q,,0?) , we need to
determine € from two equally probable hypothesis H; : € = ¢ or Hy : € = —¢. For these

problem one can use likelihood-ratio criterion:

Hla T(£1>"'7€N)<C s
6(517---7£N): ) T(gla"'agN): ;HQEEI gNgﬂ (25)
Hy, T(&,....6n) >c Hi\SLy -+ H 5N
where fy is a density function of a random vector &, ..., &y with distribution from the

hypothesis H. The Neyman—Pearson lemma gives
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Lemma 7. There is a constant ¢ for which the likelihood-ratio criterion (25) is

e minmax criterion. The number ¢ should be chosen so that the type I error and the

type II error were the same;

e Bayesian criterion for given prior probabilities r and s. The number ¢ is chosen

equal to the ratio r/s.

Due to the symmetry of the hypotheses with respect to zero, as well as the prior probabilities
can be considered equal to 1/2, we have that ¢ = 1 for minmax and Bayesian criterions.
By simple transformations we can rewrite (25):
N N
Hy, ;£z>0 —%, Z:z:1§2>0

6(&1,....¢n) = Iy =

N ; 0 N '
Hy, & <0 S 2.6 <0
i=1 i=1

This criterion is more than natural. Neyman—Pearson lemma says it is optimal. Next we

analyse error of this criterion (we will consider only case with £ = €, the other case one

can parse similarly):

€

E[f(:%N)—f(x*)]:E{Q—xAN+§} =€'P{Z§i§0}=5'P{SNSO},

eN/Qy .
= € N(0,1). Finally, we get

N
where Sy = >~ & € N(eN/Q,,02N), then SN;\F
i=1

E[f(in) — f(2")] =5P{SN ‘j%/”x < —Q“f} _ eP{SN > ”N}

- Q.o
o1 t2 . 1
B A )

In last inequality we define ¢ = Eﬂg and use lower bound for tail of standard normal
distribution. With & = Z%22 we have t = 2 and then

VN
S 1 o),
2 Top@ VN

A " €
E[f(o) = f(@)] 2 — exp (=2)
Hence, we get the next theorem:

Theorem 11 (Theorem 4) For any L > 0 and any M,T € N, there exists a stochastic
minimization problem with L-smooth and convex function such that for any output T of

any BBP(T', K') (Definition 2) with M workers one can obtain the following estimate:

Bl - )] = ().
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10. Proof of Theorems from Section 4

10.1. Centralized case

We start our proof with the following lemma:

Lemma 8. Let z,y € R” and Z C R" is convex compact set. We set zt = projz(z — y),

then for all u € Z:
27 = ul® < flz = ull® = 2(y, 2 —u) — ]2F = 2%,

Proof: For all u € Z we have (z* — (z — y), 27 —u) <0. Then

It —ul® = Iz =2+ z—ul?

= |lz—ulP+2(z" -z, 2z —u) + |27 — z|]?

= |lz—ul?+2(" -z, 2t —u) — |27 — 2|

= [lz—ul* +2(z" = (2 = y), 2" —u) = 2y, 2" —u) — ||z — z|?
(

< e =l =20y 2" —u) = [l -2

Before proof the main theorems, we add the following notation:
| M
-t M Z g;sn’ gt+1/2 th+1/2
m=1

Strongly convex-strongly concave problems

Theorem 12 (Theorem 5) Let {z'};5¢ denote the iterates of Algorithm 1 for solving
problem (1). Let Assumptions 1(g), 2(sc) and 3 be satisfied. Then, if v < J-, we have the

following estimate for the distance to the solution z*:

K 2
Bl - =) =0 (10~ = Pew (-5 5 ) + r )
~t4+1/2

Proof: Applying the previous Lemma with 2+ = 21 2 = 2/, u = z and y = vg ,

we get
2541 = 2l < 2" — 2 - 200Gt 2 = ) — | -

and with 2zt = th/Q, 2 =2t u= 2", y=g"

Hzt+1/2 o Zt+1||2 < H'Zt _ Zt+1||2 _ t o t+1/2 Zt+1> _ Hzt+1/2 _ Zt||2.

27(g", 2
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Next, we sum up the two previous equalities

t+1 ZH2 + Hzt+1/2 _ Zt+1H2 t+1/2 ZtHZ

12" = 211* = =

—29(g 2, 2 = 2 — 2y (gt 2R - ),

Iz

A small rearrangement gives
21— 2] 4+ [272 = 2 < 2 — 2P — (|2 2P
— oGV, L2 ) 2y (G — gt U2ty
<l = 2P = 22 =)
C o (gt U2 ) A2t gt 4 |2 — o2, (26)
Then we substitute z = z* and take the total expectation of both sides of the equation
E [l —2"”] < E[llo" = 2*[1P] = E [[l"2 = 2]
~RE[(g12, 22— )] 4K (g - 7P (20)
Let work with E [[|g"™"/* — g'|?]:
E[llg —gP] =E[IIg™"* = F2) + F(z') — g + F(2"2) = F(2")|°]
< 38 [l — )] 4 3E [ () — ')
+3E[| F(z"172) — F(9)]7]

©) 1 L t41/2 pt+1/2;i t+1/2 2
< 3E b—MZZ(Fm(Z & 7Y = Fn(z )
m=1 i=1
M b ?
3 ||| S S (At ) — Pl
m=1 i=1
+ 3L21E [[|24412 — 242
5 M b ‘ ?
= GEE | |20 o (Fn (1 7% = Fn (1)
m=1 i=1
5 M b ?
_° R Fm ti\ t
+ Ty mzl ;( (,6) = Fu(2"))

+ 3L°E [||Zt+1/2 —2'?].

Using that all {€4i}2 m=1 and ez .m=1 are independent, we get

M b
[||gt+1/2 gtHQ] < (bjgw)g Z ZE [HFm(zt—&-l/27£ﬂ—l/2,i) _ Fm(zt—f—l/Q)H2i|

m=1 i=1
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g M i )
T 2 2 B (1 6~ GO ]
—|—3L2E [Hzt+1/2 _ ZtHQ}

) 2 t+1/2 )2 6;‘2

< 3LE[||= Z|”+bM'

Next we estimate E [(g""/2, 2/71/2 — 2*)]. To begin with, we use the independence of all

(28)

¢, as well as the unbiasedness of §**/? with respect to the conditional m.o. by random

variables {§ﬁ1/2’i}?i‘fvm:1:

E [(gt+1/2, Zt+1/2 — Z*>] = K [E{Eﬁl/Zi}b,M [<§t+1/2, ZH_l/2 — Z*>]]

i=1,m=1

- Ek@%W“m%meHﬂLfﬂp_zw]
= E [(F(z”lﬂ), 22 2] . (29)
By property of z*, we get
E [(g”l/Q, 22 )] > E [<F<Zt+1/2) — F(z"), 2112 — z)] > pE [Hztﬂ/2 - 2"1] .

Let use a simple fact |[2"1/2 — 2*[|2 > ||z — 2*||2 — ||271/2 — 2!||%, then

E [<gt+1/2’2t+1/2 _ z*ﬂ > g]E [Hzt _ z*Hz] —uE [Hztﬂ/z o ZtHZ} _ (30)
Combining 3 inequalities (27) with z = z*, (28), (30):
\ \ 6022
B [ — 2] < (1= pE [l = 7] + 2y + 39717 = DE [ = 24)] 4 =
In Algorithm 1 the step v < ﬁ, then
60.2 2
E [l =27 < (1= m)E [l — 2 |F] + 2L
bM
Let us run the recursion from 0 to k — 1:
602y
E kE_ _*|2 < 1— sz 0 _*2 ]
I+ =17 < (=) B (10— = 1] +
Then we carefully choose v = min {i; In(max{2;bM > IU;O_Z*”?k/&TQ}) } and get (for more details

one can see [56])

k+1 *|12] _ A 0 (2 pk o’
IE[HZJr — 2 } —(9<||z — 2*||“ exp (—E)—Fu%Mk).

Substitute the batch size b and the number of iterations k£ from the description of the

Algorithm 1:

2
k+1 «121 _ A 0 112 po K o
E[Hz —z||}—(’)(||z — 2 exp(—E-?)ij).

Finally, we remember that » < A and finish the proof.
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Convex-concave problems

Theorem 13 (Theorem 5) Let {z'};>¢ denote the iterates of Algorithm 1 for solving
problem (1). Let Assumptions 1(g), 2(c), 3 and 4 be satisfied. Then, if v < 1=, we have

the following estimate:

Ewwmwnzo(L§A+\g%g.

Proof: We have already shown some of the necessary estimates, namely, we need to

use (26) with some small rearrangement

27<F(2t+1/2),2t+1/2 . Z> < ”Zt . ZHQ . ”ZH—l . ZHQ o ”zt+1/2 . ZtH2

PR () — g2 2 ) g 2 g g

Next, we sum over all £ from 0 to k — 1

k—1
1 12° = 2||* = [|2*! — 2|2
- Ja t+1/2 t+1/2 <
B AF ), 20 ) < T
k—1
+ %Z t—|—1/2) . gt+1/2 t+1/2 >
t=0
1 k—1
- 2| At+1/2 2 t+1/2  _t)2 31
27k tzov g 7'l = |z 2% (31)

Then, by z},, = & LS bt +1/2 and Yroo = T LS yt1/2 Jensen’s inequality and

convexity-concavity of f:

k—1 k—1
1
- t+1/2 1y - t+1/2
gap(z,,) < gngg <k (t_ox ) ) min f (xk (;_Oy ))

k— k—
1 22y 1 1 t41/2
< ng v) glelgggf(:v,y )
Given the fact of linear independence of " and y
=
< - t+1/2 1\ root+1/2 )
gap(zm,) < max o 3 (f2y) = fa' ™)

k—
gap( avg) S max %Z (f(l’t+1/2,y/) B f(fﬂl,yt—H/Q))

(P20 = FM2 g 02) 4 fat2, ) )
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1
< (z%a))éz E <<Vyf(l‘t+1/2, yt+1/2)7 y/ . yt+1/2> + <fo(art+1/2, yt+1/2)’ xt+l/2 . x'>)
’ t=0
1 k—1
< - t41/2) tH1/2 oy
< max - 2 (F(2"777), 2 z) (32)

Together with (32), (31) gives (additionally, we take a full expectation)

129 — 2> — ||2* — 2|
E[gap( afug)] S E |:r?€a§{ 2,7]{:
1 k—1
+EE I?eazx <F(zt+1/2) _ gt+1/2’ SH1/2 z)]
t=0
1 k—1
o fWWwawthfﬂ
v t=0
(8)é28) Q2 4 1E k_1<F( t+1/2> _t4+1/2 _t+1/2 )
S g B P g s
t=0
1 ol 67202
L ) N2 [2[[5HH1/2 _ b2 a2 2|
FoRE [P S S — 2
With v = ;7 we get
Q2 1 = t+1/2 t+1/2 _t+1/2 3yo®
E < —= 4+ -E F —g — : 33
eopGh)] < g+ B |max (P — g #2002 =) |+ 0 (@)

To finish the proof we need to estimate E {max ST(F(2HH1/2) — gttl/2 44172 )1 Let

2€Z 47
define sequence v: v° = 212, v'*! = proj; (v — vd;) with §* = F(2*/2) — g*1/2. Then
we have
k—1 k—1 k—1
<5t7 Zt+1/2 . Z> _ <(f)~t7 Zt+1/2 o Ut> + <51t7 ot — Z> (34)
=0 =0 =0

By the definition of v'*!, we have for all z € Z
(V' — ot 4yt 2 — ot > 0.

Rewriting this inequality, we get

(yot, vt —2) < (y6h vt — ot 4+ (Pt — ot 2 — ot
1 1
S (’yét,vt o Ut+1> 4 §||Ut - ZHQ . §||Ut+1 - 2”2 o §Hvt . UtJrlHQ
1 1 1
< %WW Sl = v 4 Sl =2l = St = 2 = Sl = o
R L e



With (34) it gives

E
—_

(8,212 —2) <

w
Il
)

IN

<

The right side is independent of z, then

k—1

Z<5t’ zt+1/2 ot

=0
1

o+

Z<5t’zt+1/2 o

t=0
k—1

t=0
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14 /42 1 1
- TS24+ S0t — 2112 — Z[lott — 5|2
)+ 7 ;_0 (2 1671 + Sl = =) = 5 llv z|

k—1

t Y 012 L9 2
A 5 il _

g T e 2]

E :<5t’ Zt+l/2 — ot

k—1
g
+5 2 I+
t=0

k—1 k—1 k-1
glea,} <5t’ Zt+1/2 . Z t+1/2 t> + % Z ||F(Zt+1/2) . gt+1/2||2 + 2_ (35)
=0 =0 =0 v
Taking the full expectation and using independence vt — z+1/2, {¢i/ Q’i}?’:]\fmzl, we get
k-1 i
rgezg( t+1/2 >] Z t+1/2 t>]
= =0
k—1 5
y _ 9
4L E [HF(ZtJrl/Q) - gt+1/2H2} 4 =
2 &= 2y

- E
_|_
- 7
2
(28)
2 2k
= 72

Then we can finish (33) and get

Let v = min{

4L’

10, 2bM } then

<E{§t+1/21}b wr [F<Zt+1/2) o gt+1/2} SH1/2 Ut>

Y
i=1,m=1

F(51H1/2) _ gt+1/2)2 Q_g
E[||F(="12) — g 21°] +

2y
[HF( t+1/2) gt+1/2||2} + Q_z
2y
302 n 02
bM 2~
02 ~ 502
E < —E 4
[gap(20,9)] < T30
LO? oS, >
+
k bME

Elzap(:£,) = O (

Substitute the batch size b and the number of iterations k£ from the description of the

Algorithm 1 with » < A:

Blzap(:£,)] = O (

LQEA+ oS, )
K VMT )
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Non-convex-non-concave problems

Theorem 14 (Theorem 5) Let {z'};>¢ denote the iterates of Algorithm 1 for solving

problem (1). Let Assumptions 1(g), 2(m), 3, 4 be satisfied. Then, if v < we have the

_o(Pes, oK
K MTA)®

Proof: We start proof with combining (27), (28) and (29)

4L’

following estimates:
k—

%Z 4P| =

=0

E [“Zt—H . Z*Hﬂ S E [Hzt . Z*HQ] - E [||zt+1/2 . thQ}

6720
—o9~E [(F t+1/2 t+1/2  _* 3 2L2]E t+1/2 _ _t)2 )
T [(F(12), 2512 — 2] 4 3922 [[|o441/2 = 2] 4 217
Using minty assumption (6), we obtain
E [HZtJrl . Z*HQ} < E [Hzt - Z*HZ] o (1 - 3")/2[12)]]3 [Hzt+1/2 . Zt”2} + 67_%‘2
- bM
* _ 6’}/ O'
= Efle - 2] - (1 - 312K [[|¢!]] +
With v < ﬁ
t+1 )2 t _p 272 t+1/2 t))2 67%0”
E(4 -2 < E[J - =] —<1—37L>E[||z AR
6
= [l - =) - LB ] + SF
The fact: —[|g"[]* < =3[ F(2)|I* +2[|g" — F(2")|]?, gives
6202

2
B[l = 2P) < E[l~21P) - GE [|FEI] + 2205 - FEOIP + 257

The term ||g" — F(2')||* was estimated, when we deduced (28). Then
8y20?
bM -

2
%E |:||F<Zt)H2] S E [Hzt . Z*H2] ) [Hthrl . z*HZ} +

Summing over all ¢ from 0 to k& — 1:

1o 2K [||2° — 2*|2] 1602
. zZIIF<zt>H1 < m T

t=0

Next we substitute v = iL k, b and finish the proof.
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10.2. Decentralized case

First of all, we present the missing Algorithm 4:

Algorithm 4 FastMix

Parameters: Vectors z1, ..., z)7, communic. rounds P.

Initialization: Construct matrix z with rows 27, ..., 2

choose z7' =2,2° =2 7]:1_—\/1_’\5(‘7‘/)
forh:ovl,Q,---,P—l do

Zhtl — (1 + n)th _ Uzh_la
end for

Output: rows 2y, ..., 2p; of z* .

We introduce the following notation

1 X 1 X 1 X 1 X
t_ - t t+1/2 _ t+1/2 t_ - t t+1/2 _ t+1/2

1 - 1 - 1 - 1 -
N st st41/2 L st+1/2 st 1 st st41/2 _ L St+1/2
oYt EEogS e Hogd, seogS e
Next, we introduce the convergence of FastMix [20, 48|:

Lemma 9. Assume that {ZE7 M are output of Algorithm 4 with input {251M_ . Then

it holds that

1 M 1 2P 1 M
M Z ||g7tTJLr1 o 2t+1||2 S (1 - ﬁ) (M Z ||é7tTJLr1 . 2t+1||2> and 21‘, —_ 27&.
m=1 m=1

Let after H iteration we get £y accuracy of consensus, i.e.
St st st t StH1/2  st41/2 _ st41/2 t41/2
Bm — 2 = 5m7 ”5mH < €o, Zm /2 — z /2= 5m / ) H(Sm / H < €o. (36)

Then let us estimate the number of iterations H to achieve such ¢y (how to choose this

parameter we will talk later) accuracy:

Corollary 1. To achieve accuracy €y in terms of (36) we need to take P:
e in convez-concave (Assumptions 2(c) and 4) and non-convez-non-concave (Assump-
tions 2(nc) and 4) cases

QQ _|_ Q2+02/b

P=0|xlog |1+ | |
€0



43

e in strongly convex-strongly concave case (Assumption 2(sc))

i ke

1+ :
£

P=0

VX log

LS B

m=1

where Q? =

Proof: The proof is in a rough estimate of - Z |Z0FE — 20|12
M | M
B a2 = ¢ 12t 14+1/2)12
mZ: [ Mﬂ;l!zm VW =2 g
M M
< %ZHan_ tH2 Z t+1/2 t+1/2||2
m=1 m=
5 M M
< a7 2 llprojz(3,) Z projz(Z)|* + ZHQ”WH2
m=1 =1

: : L1 a i+1/2 t+1/2(|2 1 a t+1/22
In last inequality we use property: 57 > |lgm '~ — g 17 <37 > llgm 7|7
m=1 m=1

LS — s 2 A S horoiy(2) — proja()?
=S AP < =3 |Iprojz(3,) — projz (2
Mm:1 Mm:l
1 M
+4”Pr0jz(5t) M ZPTOJZ(2§)||2
=1
M
S g
M Im
m=1
(16),(15) 8 = t )2 72 - t+1
. st 3 = /2 2
< Mﬂ;Hzm 2%+ MmZHg |
(36),(13) 472 Y 10257
< S D IEGCTIP =
m=1
872 &
< 8ehd o D B ) = Bl
m=1
M
8’}/2 N 4720,2
! Fm *
7 ;1” Eoll ;
(4) ~2 M A2 02
< 85(2)+872L2 aX||Zt+1/2_Z*H2 Z ||2 ’YbU .

and the fact that in the convex-concave

The proof of the theorem follows from v <

and non-convex-non-concave cases we can bounded |25F1/2 — 2*|| < €., in strongly

convex-strongly concave — ||2tH1/2 — 2*|| < |20 — 2*].
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U

We are now ready to prove the main theorems. Note we can rewrite one step of the

algorithm as follows:

M
1
t+1/2 L t+1/2 t+1/2 t4+1/2
z = 47 n; Z proj +0,71%)
M
1 .. .
= projz (") + 52 ) projz (32 4 6,11/%) — proj (211/%)
m=1

M
. 1 .
= projz (M DA vgfn> + A" = projz (2 —7g) + A
m=1

M

Here we add one more notation: - > projz (1% + SHYY — proj g (3H11/2) = AtHHL/2,
m=1

It is easy to see |A*F1/2|| < &5. We see that the step of the algorithm is very similar to

step of Algorithm 1, but with imprecise projection onto a set. Let us prove the following

lemma:

Lemma 10. Let z,y,A € R" and Z C R™ is convex compact set. We set zt = projz(z —
y) + A, then for allu € Z:

2 —ull* < Iz —ull® = 20y, 2" —u) — []2" — 2|
Proof: Let r = projz(z — y). For all u € Z we have (r — (z —y),r —u) < 0. Then

Feult = 2 -tz -l

|2
= |lz—ulP+20" -2,z —u)+ |27 — 2|?
= llz—ulP+2(" -z 2" —u) — |27 — 2|

(

(
= e —ull® +2(F = (2 —y), 2" —u) = 2(y, 2" —u) — 27— z|?
= ||z—u||2-|—2<7“ (z—y),r —u) +2(Ar —u) +2(z — (2 —y), A)
)

=2y, 2" —u) — |27 — 2|

< e =l +2(A, 27 —u) + 207 — (2 —y)) = 20y, 2 —w) — [ — 2|

<z —ull® +20A0 - Iz = ull + 2| All - [[projz (= — y) — projz ()]
2/ Al Iyl = 2y, 2 —u) — ||l2* — 2|

< e —ull® +20A0- 12" —ull + 41A[ - Iy = 20y, 2" —u) — [|l27 = 2]*
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Convex-concave problems

Theorem 15 (Theorem 6) Let {z };>0 denote the iterates of Algorithm 2 for solving
problem (1). Let Assumptions 1(g), 1(1), 2(nc), 3 and 4 be satisfied. Then, if v < {- and
P=0 (\/Ylog %), we have the following estimates in

oA (L2 ot
]E’[gap<zavg)] =0 ( K + W) :

Proof: The same way as in Theorem 12 one can get

25— 2P < 2 = 2l = 22— P 2, 2y
+ PG = g+ A AT 12 = 2] 4R [JAT2]] Iy
FAJA 2= 2+ 4] A g
S ||Zt o 2”2 o ||Zt+1/2 . Zt||2
— 2y(g"t2 AR = 2) + Pgt — g

+deol|2 T = 2|+ deov]lg 2] + deol| 2 = 2+ deor gl (3T)

Here we use ||A?]], [|A*1/2|| < g and the triangle inequality. Next we use estimate on gap

(32) and taking full expectation:

k—1
27k - Elgap(zy,)] < 29E [max y (F(21/?), 212 Z)]
zE
t=0
k—1
< Qz _ ZE [||Zt+1/2 _ zt||2]
t=0
k—1
+ 29F |max <F(Zt+1/2) _ gtttz Z>]
ZEZ o
k—1 k—1
+ 2 ZE [||gt+1/2 — ] + 4502151 |:Hl€a§; 211 — z||}
t=0 t=0 ?
k—1 k—1
+ 450,}/21[3 [||gt+1/2|” + 450 ZE [||Zt+1/2 o zt+1|”
t=0 t=0
k—1
+4e0v Y E[llg"l] - (38)
t=0

Let work with E [[|g"™/? — g'||?]:

M

m=1

M M
1 1
E[lg"2 = g'7] = BfIgY2 - 3 Pl ) 4 12 0 (et
m=1
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(15) 1 SR t4+1/2 ¢t+1/2 t+1/2 2
B (|| D0 S R ) — F ()
m=1 i=1
_ Y )
+5E ||| 57 D2 Fulatf /) — F(412)
m=1
- o )
t t
+5E F(z)—M;Fm(zm)
[ | Mo 2
5B || S S (Rl £4) — Fulh)
m=1 i=1
+5E |:HF t+1/2 H:|
sing that a an are independent, we get
Using that all {¢5/}}),,_, and {& ">}, are independ
t+1/2 g1 25 i t+1/2 ¢t+1/2 t+1/2y (12
E[lg*? 1) < gap 20 O [[1FnCi, €657 = Bl )]
m=1 i=1
5 M b
e 2 2 E [ Fn(ehs ) = ()] + 517 [J77 — 217
m=1 i=1
_ Y )
+5E ||| 57 22 (Funa72) = Fu(21%)
m=1
- Y )
t t
+ 5K MmZ:l(Fm(zm)—Fm(z )
(.(7)(15) 100?
< 5I2F [||Zt+1/2_zt”2} + M\Z
_ Y )
+5L% E MZ proj (3 t+1/2+6t+1/2 meJ t+1/2+5§+1/2>
m=1
[ X 1 — i
+5L5nE 57 > [Projz(2 +0,,) = 57 D projz(2' + )
m=1 j=1

1002

E [lg"" = g'I°] <SLAE[[]2712 = |"] + 55
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+10L% . FE

max

<[~

+10L% . FE

max

<
Il
—

<[~
NE 'Mi I

+10L% E

max

Sk

Il
—

m

+10L%

max

<
Il
-

<[~

(36)
< 5L2E U|Zt+1/2 .

7]

1002

+ —— +40L2

bM

M
Z HprOJ (351/2 4 §1HU2) _ proj ,(3+1/2) || ]
2
| proz (21472 + 551172 — projz (/%)) ]
o 2
HprOJZ(zt + %) —pl"OJZ<Zt)H ]

H(projz(,%t +5t —projz(2 H ]

(39)

m ax

k-1
Next we estimate E {maxzeg ST{F(2H1/2) — gtt1/2 pt+1/2 z)} . To begin with, we use the
=0

same approach as in (34), (35) with sequence v: v* = 21/2, v**! = proj ; (vt —y(F(21+1/2) —

g"1/%)) and get

k-1 k-1
I?eag( <F(Zt+1/2) . gt+1/27 SH1/2 z> < Z<F<Zt+1/2) _ gtH/Q, SH1/2 Ut>
t=0 t=0
k—1 9
i t+1/2 t+1/2)(2 Q;
A F _ z
g DR — g 2 o

t

Il
o

To begin with, we use the independence of all £, as well as the unbiasedness of ¢**'/? with

respect to the conditional m.o. by random variables {&n,

k—1
F(SH1/2) _ tH1/2 t+1)2
max » (F(27/5) =g, 2

t=0

E

S

-1

< E [E{£t+l/2 YoM

i=1,m=1

nNg

N
—_

E [||F(Zt+1/2)

BO |2

t

‘w
_
|
<)

i=1,m=1

I
i ng

E |:<E{§t+1/2 ’L}b M

=
—

[l
MT el
=1
_
M:

4~
I

m:l

T
L

+
O[22

W
i
=)

-9

E[|F(=4112) -

E U|F<Zt+1/2) .

. Z>]

[(F(zt+1/2>

t+1/2||2}

[F(Zt+1/2)

gt+1/2 ”2}

t+1/2, Z}b M

-9

gt+1/2||2} 4

i=1,m= 1

BH1/2 t41/2 Ut>H

QZ

_Z

2y

_ gt+1/2} 2 Ut>]

Q2

_Z

2y

t+1/2 Fm<zt+1/2)) Zt+1/2 . Ut>]

Q2

_Z

2y
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k—1
t+1/2\ _ t+1/2 _t+1/2
E |max t_O<F (277) =g 2 z)]
k—1 M
<D B ||lg7 2o FmlE ) - Fm<zt+l/2>>H 2 vtn]
t=0 m=1
k—1 2
v t+1/2 t+1/2)|2 Q;
+5 ) EUNFCET) =g 17+ 52
2t:0 [ ] 2y
4) - Lmax al t+1/2 t+1/2 t+1/2 t
SV B | (L 3 et sz ) ey
t=0 m=1
k—1 2

g t+1/2 t+1/22 Q3
INTENF _ 2z
+ IS BIFE) - g +

k—1 I M 1 M
<) E ( W 2 |[Projz(B 4 O — D proja (2 +57) )-Hzt“/?—vtrr]
t=0 m=1 j=1
k—1 2
Y t+1/2 t+1/2)|2 Q3
+ = E||[F(z -9 + =
5 B [IFG) = ) 4
k—1 I M
< E ( ]I\Ij,)( Z HPI'OJ t+1/2 5?{1/2) pI‘OJ ( t+1/2)H> . Hzt+1/2 . UtH]
t=0 m=1
I M
LR ( ]r\r;x ZH(prOJ (2 t+1/2+5t+1/2> proj (2 t+1/2>>H> .Hzt+1/2 _th]
j=1
k—1 2
Y t+1/2 t+1/2)|2 Q3
+ = E||[F(z -9 + =
5 B [IFG) = ) 4
(36) — t+1/2 t ’Yk t12 t+1/2])2 Y5
< 2Lmacso Y B [I|2 =[]+ 5 D B[P — g P + 2
t=0 t=0 Y
b 15
S 2Lmax€Osz §Z HF t+1/2 gt+1/2H2j| +2_,; (40)
t=0
Next we combine (38), (39), (40)
k—1
29kE[gap(2h,,)] < 202 + (5L%* — 1) Y B [[|2"> — 2|?]
t=0
il 10ko?
4 Lmax k?Q E F t+1/2 t+1/2 2 2
+ 4y Linax€o +vz Il )=+
k—1 k—1
+ 4072k L2, &2 + 4502152 |:maX||Zt+1 — z||] +45072E [11g"/2|]]
t=0

k—1 k—1

+ 4eg Z]E [Hz”l/2 — 2] + 450’YZE [llg"N] -

t=0 t=0
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Then we use v < ﬁ and Assumption 4:

k—1
2ykE[gap(zh,,)] < 202 +9° Y E [||[F(z"/7) = g+ 2|?]
t=0
L 10k
+ '~ ]\; 4 4072K L2, 22 + 8(1 + v Ly )20kS2.
k—1 k-1
+46072E (1" 72] +450721E [lg11] - (41)
t=0 t=0

It remains to estimate E [[ g""/2|| + ||¢'||]:

E[|F(z) = F(=") + F(s') = F(s") + — 3 Fu(eh) — = 3 Fu(eh) + o'

Ellgl] = i U
< IFE+E[|FE) ~ FE]+E [[| 17 3 Fuleh) - F(1)

From (39) we have that E

2
] < % and from (40)

M
E [ % S Fn(zt) — F(2Y) ] < 2L,ax€0, then
m=1
* * o
Eflg'l] < IFE+E[||F(=) = F(z*)||] + 2Lmaxeo + N
o
< + L, + 2L a0 + —,
¢ VM
M
where Q% = 1= > ||Fn(2*)||?. Hence, we can rewrite (41):
m=1
Q2 7 - t+1/2 t+1/21)2 5027
E £ - F = 1
[gap(Za,y)] < ok ; [I17°( — 9"+ 557

1 o
+20yL2 2+ 4 ( + Lmax> £o§), + 4e < + L, + 2L paxEo + —> .
Y €y + 7 0 0| @ 0 \/W

The same way as (39), one can estimate E [||F/(2/T1/2) — g"+1/2||?]:

0% 6oy
E < 2
[sap(z),,)] < ok +
1 o
424y L2 2+ 4 (— + Lmax> cof), + 4e < + L, 4 2L maxco + —) .
Yoo 4 { o€k e | © AN/

Let v = min {41L, QZ\/%} and g = O (m» where € = max (LTQE, %).Then
for the output of the Algorithm 4 it is true

LO? o)
E =0 = — .
(e, = 0 (£ + =)
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Substitute the batch size b and the number of iterations k£ from the description of the
Algorithm 2 and Corollary 1:

~ A L2 /X o,
Elgop(h,)] = O (N + =)

Strongly convex-strongly concave problems

Theorem 16 (Theorem 6) Let {z! };>0 denote the iterates of Algorithm 2 for solm’ng
problem (1). Let Assumptions 1(g), 1(1), 2(sc) and 3 be satisfied. Then, if v < ;7 and
P=0 (ﬂlog g), we have the following estimate for the distance to the solution z*:

2
sk 412] = & 0 _x2 :u g
B (124 = =) = 0 (1~ e (25 72 ) + 77 )

Proof: We start with substituting z = z* in (37) and taking full expectation. Then we
use (39) and get

Q,YE <F(Zt+1/2),zt+1/2 _ Z*>:| S E [Hzt . Z*HQ} o) [”Zt—i—l _ Z*|I2] _E [||Zt+1/2 _ Zt||2]

1002 ’y
5L2 QE t+1/2 _ _t))2
4 5L2YE 2 — 2] 4 2020

+ 4eolE [||zl“rl — z*||] + 4eg7E [||gt+1/2|” + 4e,E [||Zt+1/2 _ Zt-l-l”]

+ 480’7E [HgtH] + 2’7E [(F(Zt+1/2> . gt+1/272t+1/2 o Z*>] + 40’72.[/2 2'

max 0

The same way as (40), one can get
E |:<F(Zt+1/2) . gt+1/27 Zt+1/2 . Z*ﬁ

<E _E{étﬂ/%}b . [(F(Zt+1/2> gt 2 Z*>]]

i=1,m=1

_E <E{§t+1/21}bM [F<Zt+1/2) _ gt+1/2} L2 Z*ﬁ

i=1,m=1

r M
1
=E {37 2 (Fu(e?) = Fu(z11), 241 - z*>]
L m=1
- | M
SE ||| 72 D (Fnl?) = Ful27) ' a7 - z*n]
m=1
I N R
=E ( M Z\\zf#/z—z””zl\) -||zt+1/2—z*||]
m=1
A .
<E ( lexn; proj (2 t+1/2+5t+1/2 g projz t+1/2+5t+1/2) ) ~Hzt+1/2—z*]|]
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M
Linax o o *
= ( 0 2 Iproi= T+ ) pmjzwﬂ/z)H) S H]
L M
+ E ( ]H\;‘X Z H(projz(ft-i-lﬂ + 5;."‘1/2) _ pr0j2(2t+1/2))H> . ||Zt+1/2 _ Z*H]
j=1

(36) t+1/2 =
S 2Lmax€OE |:HZ z |H :
and then

2’YE |:<F(Zt+1/2), Zt-‘rl/Q o Z*>i|
S E [“Zt . Z*Hﬂ o) U|Zt+1 . Z*HQ] o) [||zt+1/2 . ZtHZ]
100272
bM
+ 4o [[|2"1 = 2*|]] + 4e0vE [lg"|] + 4ok [[|22 — 2] + deonE [[lg" ]

+ 5L2’Y2E [||Zt+1/2 _ ZtHZ} +

+ 4y LinaxeoE [Hztﬂ/z — 2] + 4072 L2 €5

max

Next, we work with

M
1 1 .
S TP Dl v D DL

= il=

Projz(gtJrl + 5::{1) - Projz(gtﬂ)

Sk

= Projz(gtﬂ) +
1

M
: 1 '
= projz (M E zfn — ng?t;rl/2> + AH1/2 proj 5 (Zt N fygtJrl/Z) + AtJrl/Q’
m=1

3
I

and get

2’7E [(F(ZH—I/Q), zt+1/2 . Z*”
< E [Hzt - Z*HQ} o) [Hthrl o Z*||2] - E U|Zt+1/2 . Zt||2]
100242
bM
+ 8¢ |21 — 2'[[] + 4207 [lg?]] + 420vE [Ilg']]

+ 5L2”}/2E [Hzt+1/2 _ ZtHQ] +

+ 4e0(1 + Y Lmax)E [HZHUQ - ZtM + 4eo(1 + 7 Lmax)E [Hzt - Z*M + 4072 L7, 160
S E [Hzt . Z*Hﬂ o) [Hzt-i-l . Z*“Q] o) [||Zt+1/2 . Zt||2]
100242

bM
+ 8o [||projz (2° = vg™/%) + A2 = 2||] + derE [[lg™|] + deovE [llg'll]

+ 5L%~%E [Hth/Q — 2" +

+ 4eo(1 + Y Lmax)E [||zt“/2 - th + 4eo(1 + Y Lmax)E [Hzt — Z*H} + 40’)/2[/;&}(8(2)
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E [Hzt . Z*”Q} _E [HZtJrl _ Z*H2] _E [Hzt+1/2 . Zt||2]
100242
bM
+8¢oF [||projz (2" —v9""/?) — projz (2")||] + 8
+ 4go(1 4+ Y Lunax)E [[|2" — 2||]] + 4207E [|Ig"?]]
+4enE [[lg1]] + 4e0(1 + Y LanaeE [+ = 2] + 4071203

(16)
ISG E [Hzt . Z*Hﬂ o) [”Zt—i—l . Z*”Q] o) [||Zt+1/2 . Zt||2]

+ 5L2”y2E [Hzt+1/2 _ ZtHQ] +

t||2] + 10b0‘2’)/2
M
+ 85(2) + 460(1 + 'VLmax)E [Hzt _ Z*H] + 128071@ |:||gt+1/2|”

+ 5L%~*E [|]zt+1/2 —z

+4207E [lg'll] + 420(1 + 7 Lunax)E [[|27412 = 2'|[] + 407 L5 (42)

It remains to estimate E [[ g"*/2|| + ||¢'||]:

Eflgl] = E|IFE) ~FE)+FE) ~ FE) 4+ 223 Falsh) = 52 3 Fulzh) + 4
< JFE+E[|FE) — FE]+E [[| 17 3 Fuleh) - F(1)

M b
ﬁ SN (Fuleh, ) - Fm(zﬁn))‘

m=1 =1

M b

From (39) we have that E [ a7 0 I (Fn(zh, &) — Fiu(zh,))

?|

m=11i=1

2
] < % and from (40)

LSS B(et) — F(2)

m=1

} < 2L axE0, then

E[lgl] < IFE)+E[|FE) = FE)|] + 2Lmaco + ——

VoM
o
< + LE [||2" — 2*||] + 2Lmaxc0 + —.
< QLB {13 = 5°l] + 2Linmco + =
Substituting in (42):
27E [<F<Zt+1/2)’zt+1/2 . Z*>]
SE [Hzt . Z*Hﬂ -k [Hzt+1 . Z*”z} _ [||Zt+l/2 . zt”2}

2.2 t+1/2 _ ot 10‘7272 t %
+5L*7’E [||2 7] + M + 8ep + 4g0(1 + VLimax)E [||2" — 27|]
+12¢ + LE [||277Y2 — 2%||] 4+ 2L axc0 + L)

0y (Q Il 1] T

o
+ 4e + LE [||2" — 2*||] + 2Lmaxe0 + —)
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+ 4eo(1 + YLma)E [[| 272 = 21||] + 4002L2 e (43)
By simple fact 2ab < a? + b?, we get

2’7]E [(F(Z,t4r1/2>7 Zt+l/2 _ Z*>]
E [“Zt . Z*HQ} ) [”Zt—i—l _ Z*HZ] - E [Hzt—l—l/Q . Zt||2]
100742
COM
+ 20£0(1 + YLmax)E [||2° — 2*[|] 4 16£0(1 + ¥ Limax)E [||zt+1/2 — 2]

4 5L2’}/2]E |:||zt+1/2 t” i|

o
+ 16¢ + 2L max€0 + —— | +40¢* L2 5 + 8ci
07 <Q 0 m) Y 0 0

<(1 4 10g9)E [||zt — z*||2} —E [||ztJrl — Z*HQ}

1002 7
5[/22 8 _1E t+1/2_ t112
+ (51707 + 820 — DE [[|22 — 7] + 100 T
+2020(1 + YLmmax)® + 16807 (Q + 2L a0 + ﬁ) +A0Y2L2, 22+ 82, (44)

By property of z*, we get
E [(F(41/2), 25412 — 2] > B [(F(:4Y2) = F(2), 242 — 2)] > uE [|]28172 — 24|12 .
Let use a simple fact [|2/F1/2 — 2*||2 > L||2¢ — 2*||2 — ||z*+1/2 — 2!||2, then

E[(F(z"12), 212 = 2%)] 2 EE (|2 — |] — uE |22 = |7

Then (44) gives

. 10022
R v

+ (5BL*y* + 2yp + 8 — VE [||2"/2 — 21|17

E [[|2"" = 2"[I”] < (14 10e0 — p7)E [[|2" —

g
+ 2060(1 + ’}/Lmax)2 + 16e¢7y (Q + 2L ax€0 + m)

+ 402 L2 2 + 8ep.

max

With ¢ < min (g5, 47) and v < - we have

1|2 _ﬂ) t_ 2 100?97
E [l == < (1= ) Bl = 217 + =557

o
+ 200(1 4 YLimax)* + 16207y (Q + 2L max€o + m)

+4072L2, ed + 8e;.

max
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Let’s run the recursion from 0 to k& — 1:

k * Hy 0 *112 20‘72’7
B~ =17 < (1= 51) B[ - =17 + 257
2e0 2 ( g ) 272 )
+ — 1 20(1 + vLpax)” + 16 + 2Laxc0 + ——== | +407y°L; €0+ 8co | .
1y ( ( 8 ) 7@ 0 \/W Y 0 0

Then we carefully choose v = min {41L, 2ln(maX{Q;bM“i'JZO*z*sz/20‘72})} and g9 = O(euy(1 +

Q + YLmax)?), where ¢ = max <||z — 2*||? exp (—’8‘—2) ; %) Then the output of the

Algorithm 4 it is true

=k *12] __ 7 0 *(|2 /Lk 02
E [||z -2 ] =0 (Hz — 2%||"exp (—8—L> + M%Mk)'

Substitute the batch size b and the number of iterations k£ from the description of the

_k ®(12] _ A 0 (12 po K o?
E[Hz —ZH}—O(HZ -2 exp<—8—L-F)+m).

Corollary 1 ends the proof.

Algorithm 1:

10.3. Non-convex-non-concave problems

Theorem 17 (Theorem 6) Let {z! };>0 denote the iterates of Algorithm 2 for solving
problem (1). Let Assumptions 1(g), 1(1), 2(nc), 3 and 4 be satisfied. Then, if v < 77 and
P=0 (\/Xlog g), we have the following estimate:

(TR i)

k—

B[ L3 Pk -

t=0

Proof: We start from (43) with using diameter 2.:

2’VE [<F(Zt+1/2), Zt+1/2 _ Z*>:|
10022
bM

o
+ 16eg7y (LQZ + 2L 0x€0 + \/ﬁ) + 820(1 + Y Lmax) 2. + 8(1 + 572L12nax)

With minty assumption it transforms to

S E [Hzt . Z*Hﬂ o) [”Zt—i—l . Z*HQ] . (1 . 5L272)]E [||Zt+1/2 . ZtHZ} +

0 B[ = 1) B [+ = ] — (1 = L3)E [+ = 117] + 2201
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o
+ 16¢ + L, + 2Lmaxco + —— | + 820(1 + Y Lmax)Q2 + 8(1 +59°L2 .
07Y <Q 0 N of Y ) ( Y )
100272
bM

g

VbM

+ 820(1 + Y Lmax) Q2 + 8(1 + 592L2, )en

max

=E[llz" = 2*!] —E [z = 2*[?] —4°(1 = 5L**)E [|I¢"]|*] +
+ 16e¢y <Q + L, + 2L axE0 + )

. 1
After the choice of v < ;7 we get

) ) 100%4*
0<SE[" —2"|°] —E [l - 2"|°] - IE[II 9V + =5
o
+ 16g07y <Q + LQ, + 2Lmaxco + W) + 820(1 4 Y Lmax)Q2 + 8(1 + 5% L2 )el

The fact: —[lg'||* < —3l[F(2)[* + llg" = F(=")I|*, gives

t )2 t+1 112 72 100
0<E[ = 2P| —E[|lz —ZIH—ZE[HF( )H]+ E[Hg FNI1P] + M
g
+ 16¢ + L, + 2Lmaxco + —— | + 820(1 + Y Lmax)Q2 + 8(1 +592L2, .
C o+ ) Bl L) 4 8014 57 L)

The term ||gt — F(z%)||* was estimated, when we deduced (39). Then

2 11 2.2
TE(IFEI] < B[l - 7] - E [l - 7] + =5
g
+ 16¢ + L), 4+ 2LaxE0 + —)
07 (Q 0 \/W

+ 820(1 + Y Lmax) 2 + 8(1 + 692L2, el

Summing over all ¢ from 0 to k — 1:

2

k-1
1 2 4E[||2° — z*|1?] = 440% 64z, < o )
=) _|F( < + + + L, + 2Lmax€o + ——

32¢e 32
+T°(1 + Y Lmax )L + = > (1 +692L2 )e8

L2Q2 |
k

Let v = 47 and g = O (ﬁ), where € = max (
Algorlthm 4 it holds

k—
1 E[L?]]2° — 2*||?] o2
EZ ] O( o Toar)

t=0

; bM) Then for the output of the

Substitute the batch size b and the number of iterations k£ from the description of the

Algorithm 2 and Corollary 1:

ZHF )*| =

_o(PU, oK
K MT X))
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11. Proof of Theorems from Section 5

Here we present a theoretical analysis of the proposed method. To begin with, we
introduce auxiliary sequences that we need only in theoretical analysis (Algorithm 3 does
not compute them):

. . t RS t
ZZMZZW MZFm 2 el

=1 m=1
t

2t+1/2 — 3t _ 7§t> gt-i-l ’ygt+1/2 (45)

Such sequences are virtual, but at the communication moment z* = zf, or §* =y .

11.1. Strongly convex-strongly concave problems

Theorem 18 (Theorem 7) Let {z }i>0 denote the iterates of Algorithm 8 for solving
problem (1). Let Assumptions 1(1), 2(sc), 3 and 5 be satisfied. Also let H = max,, |ky11—k)|
is a maximum distance between moments of communication (k, € I1). Then, if v < m,

we have the following estimate for the distance to the solution z*:

T *121 _ A pk 0 _p) o’ (D2H+0 )HLIQHaX
E[HZ —Z || ] =0 (exp <—m) ||Z —Zz || + MQMT + M4T2 .

Proof of Theorem: We start our proof with the following lemma.

Lemma 11. Let z,y € R". We set 27 = z — vy, then for all u € R":
Iz —ull® < flz = ull® = 2¢y, 2 —w) — [lz7 = 2|1*.
Proof: Simple manipulations give

Iz —ull* = flo* =2+ 2z —ul?
= |z —ullP +2(" =2,z —u) + [T — 2|
= |lz—ul*+2(" -z, 2t —u) —||z7 — 2|?
= [lz—ul* +2(zF = (2 —y), 2" —u) = 2y, 2" —u) — ||z — z|?
(

= Jlz —ull® = 2{y, 2" —u) = ||l2* = 2|*.

t+1/2

Applying this Lemma with z = 2!}, 2 = 2!, u = 2* and y = 7§ we get

H St+1 t+1/27 2t+1 *> ” st+1 —t||2’

=[P =1z = 2"I* - 2+(g
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and with z = 2412 2 = 2ty = 21y =gt

||2t+1/2 o 2t+1||2 — ||2t o Z15—',—1”2 o

2,7<§t’2t+1/2 . 2t+1> . ||2t+1/2 o thQ.

Next, we sum up the two previous equalities

||zt+1 Z*HQ + ||5t+1/2 _ 2t+1”2 — ||2t _ Z*HQ _ ||2t+1/2 _ 2t||2

—t+1/27 S _ 2

_27<g —t t+1/2 2t+1>'

—29(7', 2
A small rearrangement gives

Hzt—&-l P ||2 + ||Zt+1/2 —t+1H2 Hzt+1/2 . th2

= |7 =2 -

_27<gt+1/2 —t+1/2 PR 27<gt+1/2 — 7, FH1/2 _ st

IN

2 — 2|2 — [)21/2 — 21

(g, A ) 22— g

+||2t+1/2 . 2t+1H27

Then we take the total expectation of both sides of the equation
E[Is4 = 2P] = E[j2' = 2|%) — B[22 - )]

—2E (g2 2 =)+ 7R (llg2 - g7 (46)

Further, we need to additionally estimate two terms —2vy(gt*'/2 z+1/2 — »*) and

~t41/2

llg G'||*. For this we prove the following two lemmas, but before that we introduce

the additional notation:

Err(t Z 12t — 2L || (47)

Lemma 12. The following estimate is valid:

* ’YLIQII&X
—Q’VE [<gt+1/2 st+1/2 >} < ”)/,uE U|Zt+1/2 p ||2} 4 TE [Err(t + 1/2)] _ (48)

Proof: We take into account the independence of all random vectors £ = (&, ..., &)

and select only the conditional expectation Eeit1/2 on vector £1/2

M
1 - *
(1 e irin e o)
m=1

_27E [< t+1/2 t+l/2 Z*” _ _2'71[3

)



_ M -
2 e <% S Fu(atf2), 24102 >
L m=1 J
_ . M -
= —2E <M S Fa(5), 22 >
L m=1 J
_ ) M -
+27E <M Z[Fm(zt—’—lﬂ) - Fm(Z;jl/Q)], 2t+1/2 - Z*>
L m=1 _
— —2")/E |:<F(2t+1 2)’ Zt+1/2 Z*>j|
_ ) M -
+2,,YE <M Z[Fm(2t+l/2) . Fm(zf”jl/2)]7 5t+1/2 . Z*> )
L m=1 i

Using property of z*, we have:

—27E [( t+1/2 S+1/2 Z*” = —29E [<F(2t+1/2) —F(zY), SH1/2 >}
M
1
+27E <M S (B (H2) — B (217, 2412 - z>]
m=1

,\
A S

—Q’YME [||Zt+1/2 Z*||2]

<% S Fn(3412) = BV, 202 >] |

m=1

+27E

For ¢ > 0 it is true that 2(a,b) < 2||al|* + ¢/[b]|?, then

3R ({2, 22— )] < ol [ — 2] o [ — ]

2

M
Z t+1/2 Fm(zt+1/2)]
u — "

—_ —’y,u]E [||Zt+1/2 Z*HQ}

M
t+1/2 _F (Zt+1/2)]
uM2 mzz e

(15)
< WE[HZ””2 2]

Z ||F t+1/2 Fon( ;jl/Q)"?]
Z H7t+1/2 t+1/2H2] '

+—IE

() ")/ max
< —yuE a2 - 217+ Dhas

Definition (47) ends the proof.
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Lemma 13. The following estimate is valid:

1002
M
E [Err(t + 1/2)] + 5L2

max

max

E (g2 = %] < 5L3,E (1772 — 2'|P] +

+ 5172

max

Proof:

[”gt—i-l/Q —t” }
2

M
1 1
POSLACILLEURE S OLAER

m=1 m:l

2

M
< sE Z (72, 6501%) = Fn(212)

1 M
+ hE MmZ:[Fm(Zimgfm) - Fm(Z,i@)]

M
1
+5E Y [Fnla ) = B2

+5E || = S [Fu(h) — Fa()

M 2
LS [, €52) - Ry (2£H1/2))

2 S B[ Fa(eh) - Fa(2)]?] +5E [l F)

(4),(47)
< 5K

1 M
> (b2 62) = B (1))

2

FOE | |1 [Pzl €4) — Fn(2)]

E [Err(t)] .

P
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+5L2  E [Err(t + 1/2)] + 5L E [Err(t)] + 5L2  E [||z"1/2 — 2||?]
M 2
= OB |Bayu [||57 DI ) — Rl
+38 [Be, || 37 D (P (20 €1) ~ Fach)
+5L2 B [Err(t + 1/2)] + 512 E [Err()] + 5L2, . E [||z277/2 — 2'|)?] .

Using independence of each machine and (7), we get:

1002
M max
+5L2  E[Err(t)] + 5L2

max max

[||gt+1/2 tHQ} <

E [Err(t + 1/2)]

[HZtJrl/Z —tHZ] )

We are now ready to combine (46), (48), (49) and get

[Hzt—H Z*HZ} S E[Hgt_z*HQ] [”Zt+1/2 —tHQ]
CE [|22 - ] + 7L:lﬁXJE[Err(H1/2)] (50)

10202
M
+57v2 L2 E[Err(t + 1/2)] + 59* L2, E [Err(t)] . (51)

max

max

_‘_572[/2 [||Zt+1/2 7t||2} +

Together with —||Z7+1/2 — 2*||2 < ||24F1/2 — 2|2 — 1)2|| 2" — 2*||? it transforms to

10 2 2
B =] < (1-F) B0 -1 + =7

+(py + 577 L2 — D)2 — 212

L2
T g (1 4 1/2)] + 57202, B [Err(t + 1/2)]
W

max

+572L2, E [Err(t)] .

Taking v < g7 — gives

10%0”
[||Zt+1 Z*HQ} < (1_ _) [” *”2] + Yo

< M
77ZmaxE [Err(t +1/2)] + 572[/2 E [Err(t)]. (52)

max

It remains to estimate E [Err(¢ + 1/2)] and E [Err(t)].

Lemma 14. Fort € [t, + 1;t,41] the following estimate is valid:



61

E [Err(t+1/2)] < 216(D2H + o) H~. (53)

Proof: First, let us look at the nearest past consensus point ¢, < ¢, then 2l = Ftotl

E [Err(t+1/2)] = M Z E||zt+1/2 — ot
X "
= M;EHZH—I/Q _ 4 sz; _ Z;;l—l/QHQ
2
72 M _
= M ZE Fm(zfn,ffn) _ gt + Z [Fm(zfrl+1/27€fn+l/2) N gk+1/2]
m=1 k=t +1

Only g* and F,(2%,£") depend on £*, as well as the unbiasedness of g* and F, (2%, &F),

we have

M M t—1 t—1
7 1 ¢ _kt1/2 ¢ k1/2 cht1)2
E[Err(t +1/2)] = i Z i ZFi(zi) - Z 7 + Fn(zm,) + Z Fo(z 75, 6077)
i=1 k=tp+1 k=tp+1
P o 2
+ 37 Y E

m=1

M

1

i E Fi(z) — 9" — Fu(z,) + Fu(2,,6,)
=1

We want to continue the same way, but note that z! depends on £€*='*1/2 then let us make

the estimate rougher than in previous case

2 M -1
E [Err(t 4+ 1/2)] < (14 5o)— Z Z gFt1/2 4 Z (k12 k)2
m= k=t k=tp+1

2

1 - t t

2

M
1 Z _

Here [, is some positive constant, which we define later. Then

E [Err(t + 1/2)]

M M t—2
7 1 —1+41/2 _
m=1 i=1 k=tp+1

— 2
+ Fm(zfniprl/z: &-i;l+1/2> + Z Fm(z7krz+1/2> €7kn+1/2)

k=t,+1
2

M

1 t t
37 2 Fieh) + Fu(eh)

i=1
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2 M

+(1+Bo)7MZ]E

m=1

M
1 _
7 DO (e = 7 = Fu(ah) + Fulzhs )

=1

M
1 t-141/2y _ _ _
MZFZ(zz / ) — g 1+1/2 Fm(Z’fn 1+1/2) —l—Fm(Z,tn 1+1/27£;tn 1+1/2)

=1

2
2

")/M
o

=1

and

E [Err(t + 1/2)]

< 7_2 . _ . ~k+1/2 (2h+1/2 gh+1/2
_(L+%X1+&Lw2;E k%;ﬂ +k%;1 )
2 M 1M 2
+(1+60)(1+ﬁ;1)ﬂz Z Li—11/2 )+ Fp(2h t— 1+1/2)
m=1 =1
9 M M 2
+ (L+ )12 DB =22 S Fie) + Fun(h)
m=1 =1

M
M
1 _
ZFi(Z? 1+1/2) . gt—1+1/2 _ Fm(zin—1+1/2> + Fm(zfn—1+1/27£;—1+1/2)

M < i
m=1 i=1
-2 M 1M 2
m=1 i=1
One can continue this way for all terms, setting ; = ——, where a = 4H. Then for all

i=0,... (t—t,—1)

(07

(1+Bo) 1+ B0+ B)...(1—8) =

a—1—1°
Note that ¢t — ¢, < 2H, hence for all i =0,...,(t —t, — 1)

o
< 2.
a—2H —

(14 Bo) A+ L)L+ B2). .. (14 8:) < (T + L)X+ B2) ... (1+ Bre,—1) <
Additionally, 1+ ;' < o, then (o = 4H)

E [Err(t + 1/2)]

M M 2
2a
<2 S S E - LS R )
k=tp+1m=1 =1

2

Fon(2p,)

==
||'M§
|
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2

22 &L |1 &
+ 57 2B 57 Do Bl =8 = Fu(z,) + Pl 60)
m=1 =1
2
8V H i 1 — k+1/2 k+1/2
= Y E _MZE(’Zi )+ Fn (27
k=tp+1m=1 i=1
2
8v*H - 1 t t
+—7 ;E —M;Fi(é) + Fn(2,)
8"}/2 t—1 M 1 M
8" 1 SV N ARy k+1/2 k+1/2 ¢h+1/2
tar 2 2Bl BET) -9 Fr(2 %) o B (212, 601112)
k=tp+1m=1 i=1
872 & 1 < i
+ 57 2B 57 Do) =8 = Fu(z) + Fulz,60)
m=1 =1

It remains to estimate

1 & 1 < i
L o o k+1/2 k+1/2
(15) 3 M - k+1/2 1 -
< 2 E - E Sk+1/2
3 & 1 & i
+MZE _MZF( k+1/2)+F <k+1/2)
m=1 =1
3 & i
+ = Y B|| = FulB) + P
m=1
13) 6 M ?
i _ Zk+1/2 k+1/2 2
< MmzlE E (Y2 4 B (2F72)| +3D
4) 6L max —k+1/2 k+1/22 2
< WZIEIIZ — 2z P+ 3D
=6L2, E[Err(k +1/2)] +3D?
and
M M 2
iz Z k+1/2 _ G2 B (2R R (R ehi2)
Mm:1 ~ m m m m rSm

2
(15)

< 2|E

M
1
3 PG gt
=1

M
ZEHF k+1/2)+F ( k+1/2 €k+1/2 H ]
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Finally, we get
E [Err(t +1/2)] < 484212, H Z [Err(k + 1/2)] + 48+2L2, HE [Err(t)]
k=tp+1
t—1

+32(D°H +0%) Y 47 +3297 (0" + D?). (54)
k=tp+1

The estimate for E [Err(¢ + 1/3)] is done in a similar way:

t—1
E [Err(t)] < 489%L%  H Z E[Err(k + 1/2)] + 32(D°H +0°) Y+ (55)
k=tp+1 k=tp+1
Substituting E [Err(t)] to E [Err(t + 1/2)], we get
t—1
E[Err(t+1/2)] < 48v°L2, H Y E[Err(k+1/2)]
k=tp+1

t—1
+48v°L% H | 4822 H Z [Err(k +1/2)] +32(D°H +0%) > 7

max max

k=tp+1 k=tp+1
t—1
+32(D°H +0%) Y 443297 (0°+ D?).
k=tp+1
With 7 < g7,

E [Err(t + 1/2)] < —H Z [Err(k + 1/2)] + 72(D*H + o?)7%(t — t, — 1).

P

Let us run the recursion:

1 1

E [Err(t +1/2)] < SH (1 + 8_H> k:t_ZHJE [Err(k +1/2)]

1
T 72(D*H + o*)y(t —t, — 272 (t —t, — 1)

t—1 1\t
<T2AD’H+ 0%y Y (1 + 8—H> .

k=t,+1

Then one can note that (1 + #)t_l_j < (1 + ﬁ)w < exp(1) < 3 and then

E [Err(t +1/2)] < 216(D*H + ¢?) 7 < 216(D*H + o*)H~*.
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Note that in the general case E [Err(¢ 4+ 1/3)] may be less than E [Err(¢)], but since
recurrent (54) is stronger than (55), we assume for simplicity that E [Err(k + 1/3)] >
E [Err(k)]. Than (52) can be rewritten as

10 2 2
Efl -7 < (1-EDE[Iz ) + =7

Ty L2
b (P s 52, ) Bl + 1/2)
W
ey _ cion . 107202
()
Ty L2
+ (7—“1 + 572Lfnax> (216(D*H + 0*)H~?) .
W

Running the recursion, we obtain:

T . T a2y 000 V(DH +o*)HLG,
B[ -1 =0 (1= 5) 10— =+ 25+ -~ ,

or

_ T vo?  ~*(D?*H + o*)HL?
E T *|2 Hy 0 *|2 max
" == = 0 (exp( 2 ===l puM u?

Finally, we need tuning of v < srz7— Hlex3

21n(max{2 u||zo—z*||2TM/a2}) 21n(max{2 quO—z*HQTM/Uz}) .
1 ’ . ’
o If e 2 T then v = T gives

~ 2 D2H 2HL2
O<exp(—ln(max{27ﬂﬂzo—Z*HQTM/UQ}))Hzo—z*Her o DHto) m)

p*MT " pAT?
A o (D*H +oc*)HIL2,,
= ,LL2MT M4T2
n(max 20—2*||2 o2
it < (max{2,u] g PTM/7}) then = S gives
. T 0 g2, 200 V(DH 4+ 0*)HILG,,
@, R e _
(exp( 42HLmaX> I=" ==+ M + 112
’ pT 0 g2, 05 [ (DPH+0HLL,,
<O o n _ |
N (eXp( 42HLmax) =% ==+ p2MT * (A2
O

11.2. Non-convex-non-concave problems

Theorem 19 (Theorem 7) Let {2} }i>0 denote the iterates of Algorithm 8 for solving
problem (1). Let Assumptions 1(1), 2(nc), 3 and 5 be satisfied. Also let H = max,, |ky11—k,|
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is a mazimum distance between moments of communication (k, € I) and ||Z*]] < Q (for

. 1 . . .
all't). Then, if v < 1L we have the following estimate:

T T1/3 T

TZ “2] (Lfnax||z°—z*||2+<Lmax9<D2H+a2>H>2/3 o?

t=0

+ Linax 0/ (D2H + a2)H> :

Proof: Most of the necessary estimates have already been made in the previous
subsection. In particular, Lemmas 13 and 14 are valid for us. But Lemma 12 needs

modification:

Lemma 15. It holds:

2B (/2 2412 = 27)] < 29 L [E[[241/2 — 2+ |2) /B [Bre(t + 1/2)]

+ YL E [||[Z772 — 2'||?] + 4LE [Exr(t + 1/2)]. (56)

Proof: First of all, we use the independence of all random vectors &' = (&, ... &)
and select only the conditional expectation Egi+1/2 on vector £+1/2 and get the following

chain of inequalities:

—2"}/]E [< t+1/2 t+1/2 Z*ﬂ _ —2’}/E

!

/1
IE | { —
T <M

< Z ]Egk+1/2 t+1/2’£TtTJLr1/2>]’ Zt+1/2 . Z*>]

Fm(z’f;rl/Q)’ 2t+1/2 o Z*>]

—
~

= —27E

<[~

(=11

S

Fm(2t+1/2)7 2t+1/2 o Z*>]

1

[Fm(2t+1/2) . Fm(zfrjl/Q)],Zt-i_lﬂ — ot

NE

m=1

— —2’7]E |:<F(Zt+1/2) 2t+1/2 _ Z*>]

+ 2’7E < Z —t+1/2 Fm<zf:1/2)]’ 2t+1/2 i Z*>

m=1

M

(< 27E < Z t+1/2 Fm(251+1/2)]72t+1/2_2*>
B M

<o iz | LS e mger|
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< 29K

M
= 83 e -
m=1

4) St4+1/2 * 1« t+1/2 _ zt+1/2
< 2L |22 = 2] 37 D ||z = 2
m=1

—2’7]}_‘: [<§t+1/2’ 2t+1/2 . Z*>j|

L1 Y i
< 2’7Lmax]E ||Zt — H . Mmzﬂ Hzﬁl/2 . Zt+1/2||]
1 M
29 LB | 252 = 2 2 D [l - zt“/?\‘]
m=1

M
1
< Lo VENZ — 27 |E|[ = ‘
< L VETE — 7T (Mm§1j

2
t+1/2  _
L1/ Zt-i—l/?H)

M 2
1
412 otyj2 4 _t41/2  _t41)2
+ 7 LiaxE [”Z Z|| ] + ¥ LmaxE (M;HZ “m H)

By (15) it is easy to see that

M 2
1
= (ME:nzt“”—zWH) <E
m=1

This completes the proof.

1 M
St41/2 Zt+1/2||2
M > Iz m ] ‘
m=1

Then we have the same as (50):

E [HZtJrl . Z*H2] < E [Hzt o Z*HZ} _F [Hzt+1/2 . gtHﬂ
+ 27 Linax VE[[|2* — 2*[]]/E [Erx(t + 1/2)]

+ VLo E [[I24Y2 = 2)12] + YL E [Exr(t + 1/2)]

100
442 (5LfnaxE (120472 — 2t)2] + 7‘7 + 512 E[Ere(t+1/2)] + 502 E [Err(t)]) .

max

Choosing v < 4L1 gives

%E [Hzt+1/2 . ZtHQ} < E [Hzt _ Z*HZ] o) [||2t+1 o Z*HZ}

+29Lunax VE[I|2* — 2*[2]V/E [Err(t +1/2)]

107202

(572 L + V) E [Bre(t + 1/2)] + 5921, B [Bre(t)] + —

max
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Next we work with

[Hzt—i-l/Q tH2]

2

2 1 M
> TE|FE)P = 7E (|22 30 Fuleh, €)= Faleh) + Fu(sh) = Fu(')
m=1
v’ NIE: 2 1 t t i
> SE[|FE)| - 2R M;Fm< s €)= F(21,)
1 & ’
—29°E ||| Y Fin(2l,) — Fuu(2)
m=1

2 2 272 M
Epe HF<?>||2 - - Sk [l - 2]
m=1

—E I1F()]” 27212 E[Err(t)].

max

Connecting with previous gives

2

LE[IFEI <E[I2 - 27 - E )5 - o))

+27Lunax VE |2 — 2*[2]V/E [Err(t +1/2)]

117202
M

+ (YLmax + 5V L2, OE [Err(t + 1/2)] + 69° L2, E [Err(t)] +

With result of Lemma 14 we get
7 NI 2 t41 2
TEFENI] <E[IZ = 2] —E [ - 2"|7]

+ 2y Linax VB [[| 28 — 2[[2]3/216(D?H + 02) H~?
117202
M

+ 216 (Y Liax + 1177 L2, ) (D*H + o) H~*.

max

+

Summing over all ¢ from 0 to 7" — 1 and averaging gives:

TZ 2] < S 2P, 440
~2T M

t=0

+ 1000(y Linax + 1172L2 )(DZH +o)H

max

120Lmax D2H 2)
VD + o) Z\/ . 7

[z -
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Under the additional assumption that ||2*|| < Q and ||z']] <, from (57), we obtain

- of 122 =1
Z 2P| = O B+ (s + 7 L) (D°H + %) H
t=0

2
+ UM + LnaxQ/ (D?H + 02)H> :

. . 1 Hgo_z*HQ 1/3
With v = min yy— <TLmax(D2H+02)H> we have

S

-1

E 17 ()]

L2 12° = 27 (LuwaxQUD?*H 4 0?)H)?? 52
_O< = + VE +

S| =
~

if
=)

+ Linax O/ (D2H + 02)H> :
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